11-Deoxycortisol controls hydromineral balance in the most basal osmoregulating vertebrate, sea lamprey (Petromyzon marinus)


  • 1.

    Close, D. A., Yun, S.-S., McCormick, S. D., Wildbill, A. J. & Li, W. 11-Deoxycortisol is a corticosteroid hormone in the lamprey. Proc. Natl. Acad. Sci. USA. 107, 13942–13947 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Bridgham, J. T., Carroll, S. M. & Thornton, J. W. Evolution of hormone-receptor complexity by molecular exploitation. Science 312(5770), 97–101 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Rai, S. et al. A putative corticosteroid hormone in Pacific lamprey, Entosphenus tridentatus. Gen. Comp. Endocrinol. 212, 178–184 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Eick, G. N. & Thornton, J. W. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor. Mol. Cell. Endocrinol. 334(1–2), 31–38 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Rossier, B. C., Baker, M. E. & Studer, R. A. Epithelial sodium transport and its control by aldosterone: The story of our internal environment revisited. Physiol. Rev. 95, 297–340 (2015).

    PubMed 

    Google Scholar
     

  • 6.

    Youson, J. H. A description of the stages in the metamorphosis of the anadromous sea lamprey, Petromyzon marinus L. Can. J. Zool. 57, 1808–1817 (1979).


    Google Scholar
     

  • 7.

    Bartels, H., Fazekas, U., Youson, J. H. & Potter, I. C. Changes in the cellular composition of the gill epithelium during the life cycle of a nonparasitic lamprey: Functional and evolutionary implications. Can. J. Zool. 89(6), 538–545 (2011).


    Google Scholar
     

  • 8.

    Reis-Santos, P., McCormick, S. D. & Wilson, J. M. Ionoregulatory changes during metamorphosis and salinity exposure of juvenile sea lamprey (Petromyzon marinus L.). J. Exp. Biol. 211, 978–988 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Shaughnessy, C. A. & McCormick, S. D. Functional characterization and osmoregulatory role of the Na+/K+/2Cl cotransporter (NKCC1) in the gill of sea lamprey (Petromyzon marinus), a basal vertebrate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318, R17–R29 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Beamish, F. W. H., Strachan, P. D. & Thomas, E. Osmotic and ionic performance of the anadromous sea lamprey, Petromyzon marinus. Comp. Biochem. Physiol. 60, 435–443 (1978).


    Google Scholar
     

  • 11.

    Barany, A., Shaughnessy, C. A., Fuentes, J., Mancera, J. M. & McCormick, S. D. Osmoregulatory role of the intestine in the sea lamprey (Petromyzon marinus). Am. J. Physiol. Regul. Integr. Comp. Physiol. 318(2), R410–R417 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Richards, J. E. & Beamish, F. W. H. Initiation of feeding and salinity tolerance in the pacific lamprey Lampetra tridentata. Mar. Biol. 63, 73–77 (1981).


    Google Scholar
     

  • 13.

    Marshall, W. S. & Grosell, M. Ion transport, osmoregulation, and acid-base balance. In The Physiology of Fishes 3rd edn (eds Evans, D. H. & Claiborne, J. B.) 177–230 (Taylor and Francis Group, Boca Raton, 2006).


    Google Scholar
     

  • 14.

    Takahashi, H. & Sakamoto, T. The role of ‘mineralocorticoids’ in teleost fish: Relative importance of glucocorticoid signaling in the osmoregulation and ‘central’ actions of mineralocorticoid receptor. Gen. Comp. Endocrinol. 181, 223–228 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Takei, Y. & McCormick, S. D. Hormonal control of fish euryhalinity. In Fish Physiology: Euryhaline Fishes Vol. 32 (eds McCormick, S. D. et al.) 69–123 (Academic Press Inc, Amsterdam, 2012).


    Google Scholar
     

  • 16.

    McCormick, S. D. Smolt physiology and endocrinology. In Fish Physiology: Euryhaline Fishes 1st edn, Vol. 32 (eds McCormick, S. D. et al.) 191–251 (Academic Press Inc, Amsterdam, 2013).


    Google Scholar
     

  • 17.

    Bisbal, G. A. & Specker, J. L. Cortisol stimulates hypo-osmoregulatory ability in Atlantic salmon, Salmo salar L. J. Fish Biol. 39, 421–432 (1991).

    CAS 

    Google Scholar
     

  • 18.

    McCormick, S. D., Regish, A., O’Dea, M. F. & Shrimpton, J. M. Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+, K+-ATPase activity and isoform mRNA levels in Atlantic salmon. Gen. Comp. Endocrinol. 157(1), 35–40 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Specker, J. L., Portesi, D. M., Cornell, S. C. & Veillette, P. A. Methodology for implanting cortisol in Atlantic salmon and effects of chronically elevated cortisol on osmoregulatory physiology. Aquaculture 121, 181–193 (1994).

    CAS 

    Google Scholar
     

  • 20.

    Veillette, P. A., Sundell, K. & Specker, J. L. Cortisol mediates the increase in intestinal fluid absorption in Atlantic salmon during parr-smolt transformation. Gen. Comp. Endocrinol. 97, 250–258 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Shaughnessy, C. A. & McCormick, S. D. Reduced thermal tolerance during salinity acclimation in brook trout (Salvelinus fontinalis) can be rescued by prior treatment with cortisol. J. Exp. Biol. 221, jeb169557 (2018).

    PubMed 

    Google Scholar
     

  • 22.

    Weisbart, M., Chakraborti, P. K., Gallivan, G. & Eales, J. G. Dynamics of cortisol receptor activity in the gills of the brook trout, Salvelinus fontinalis, during seawater adaptation. Gen. Comp. Endocrinol. 68, 440–448 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Shrimpton, J. & McCormick, S. D. Responsiveness of gill Na+/K+-ATPase to cortisol is related to gill corticosteroid receptor concentration in juvenile rainbow trout. J. Exp. Biol. 202, 987–995 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Kolosov, D. & Kelly, S. P. The mineralocorticoid receptor contributes to barrier function of a model fish gill epithelium. J. Exp. Biol. 222(11) (2019).

  • 25.

    M. E. Baker, J. W. Funder, S. R. Kattoula. Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors. J. Steroid Biochem. Mol. Biol. 137, 57–70 (2013).


    Google Scholar
     

  • 26.

    Kiilerich, P., Tipsmark, C. K., Borski, R. J. & Madsen, S. S. Differential effects of cortisol and 11-deoxycorticosterone on ion transport protein mRNA levels in gills of two euryhaline teleosts, Mozambique tilapia (Oreochromis mossambicus) and striped bass (Morone saxatilis). J. Endocrinol. 209(1), 115–126 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Kiilerich, P., Kristiansen, K. & Madsen, S. S. Hormone receptors in gills of smolting Atlantic salmon, Salmo salar: Expression of growth hormone, prolactin, mineralocorticoid and glucocorticoid receptors and 11β-hydroxysteroid dehydrogenase type 2. Gen. Comp. Endocrinol. 152, 295–303 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Shrimpton, J. M. Relationship between size, gill corticosteroid receptors, Na+-K+ ATPase activity and smolting in juvenile coho salmon (Oncorhynchus kisutch) in autumn and spring. Aquaculture 147, 127–140 (1996).

    CAS 

    Google Scholar
     

  • 29.

    Nilsen, T. O. et al. Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): Seasonal development and seawater acclimation. Gen. Comp. Endocrinol. 155, 762–772 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Mizuno, S. et al. Changes in transcript levels of gill cortisol receptor during smoltification in wild masu salmon, Oncorhynchus masou. Zool. Sci. 18, 853–860 (2001).

    CAS 

    Google Scholar
     

  • 31.

    Cruz, S. A., Lin, C.-H., Chao, P.-L. & Hwang, P.-P. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (Danio rerio). PLoS ONE 8(10), e77997 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Shrimpton, J. M. et al. Increases in gill cytosolic corticosteroid receptor abundance and saltwater tolerance in juvenile Coho salmon (Oncorhynchus kisutch) treated with growth hormone and placental lactogen. Gen. Comp. Endocrinol. 98, 1–15 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Kawauchi, H. et al. Identification of growth hormone in the sea lamprey, an extant representative of a group of the most ancient vertebrates. Endocrinology 143(12), 4916–4921 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Baker, M. E. Evolution of glucocorticoid and mineralocorticoid responses: Go fish. Endocrinology 144, 4223–4225 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Chasiotis, H., Kolosov, D., Bui, P. & Kelly, S. P. Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: A review. Respir. Physiol. Neurobiol. 184, 269–281 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Kolosov, D., Bui, P., Wilkie, M. P. & Kelly, S. P. Claudins of sea lamprey (Petromyzon marinus)—organ-specific expression and transcriptional responses to water of varying ion content. J. Fish Biol. 96, 768–781 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Mukendi, C. et al. Evolution of the vertebrate claudin gene family: Insights from a basal vertebrate, the sea lamprey. Int. J. Dev. Biol. 60(1–3), 39–51 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Kolosov, D., Bui, P., Donini, A., Wilkie, M. P. & Kelly, S. P. A role for tight junction-associated MARVEL proteins in larval sea lamprey (Petromyzon marinus) osmoregulation. J. Exp. Biol. 220, 3657–3670 (2017).

    PubMed 

    Google Scholar
     

  • 39.

    Bui, P., Bagherie-Lachidan, M. & Kelly, S. P. Cortisol differentially alters claudin isoforms in cultured puffer fish gill epithelia. Mol. Cell. Endocrinol. 317(1–2), 120–126 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Kolosov, D., Donini, A. & Kelly, S. P. Claudin-31 contributes to corticosteroid-induced alterations in the barrier properties of the gill epithelium. Mol. Cell. Endocrinol. 439, 457–466 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Sakamoto, T. & McCormick, S. D. Prolactin and growth hormone in fish osmoregulation. Gen. Comp. Endocrinol. 147(1), 24–30 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Cadepond, F., Ulmann, A. & Baulieu, E.-E. RU486 (mifepristone): Mechanisms of action and clinical uses. Annu. Rev. Med. 48, 129–156 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    J. W. Funder. Mineralocorticoid receptor antagonists: Emerging roles in cardiovascular medicine. Integr. Blood Press. Control 6, 129–137 (2013).


    Google Scholar
     

  • 44.

    Sloman, K. A., Desforges, P. R. & Gilmour, K. M. Evidence for a mineralocorticoid-like receptor linked to branchial chloride cell proliferation in freshwater rainbow trout. J. Exp. Biol. 204, 3953–3961 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Marshall, W. S., Cozzi, R. R. F., Pelis, R. M. & Mccormick, S. D. Cortisol receptor blockade and seawater adaptation in the euryhaline teleost Fundulus heteroclitus. J. Exp. Zool. Part A Comp. Exp. Biol. 303(2), 132–142 (2005).

    CAS 

    Google Scholar
     

  • 46.

    Scott, G. R., Keir, K. R. & Schulte, P. M. Effects of spironolactone and RU486 on gene expression and cell proliferation after freshwater transfer in the euryhaline killifish. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 175(7), 499–510 (2005).

    CAS 

    Google Scholar
     

  • 47.

    Kiilerich, P., Pedersen, S. H., Kristiansen, K. & Madsen, S. S. Corticosteroid regulation of Na+, K+-ATPase α1-isoform expression in Atlantic salmon gill during smolt development. Gen. Comp. Endocrinol. 170(2), 283–289 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Pippal, J. B., Cheung, C. M. I., Yao, Y. Z., Brennan, F. E. & Fuller, P. J. Characterization of the zebrafish (Danio rerio) mineralocorticoid receptor. Mol. Cell. Endocrinol. 332, 58–66 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Sugimoto, A. et al. Corticosteroid and progesterone transactivation of mineralocorticoid receptors from Amur sturgeon and tropical gar. Biochem. J. 473, 3655–3665 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Katsu, Y. et al. Transcriptional activation of elephant shark mineralocorticoid receptor by corticosteroids, progesterone, and spironolactone. Sci. Signal. 12, eaar2668 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Fuller, P. J. et al. Molecular evolution of the switch for progesterone and spironolactone from mineralocorticoid receptor agonist to antagonist. Proc. Natl. Acad. Sci. 116, 18578–18583 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Baker, M. E., Chandsawangbhuwana, C. & Ollikainen, N. Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors. BMC Evol. Biol. 7, 24 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Baker, M. E. & Katsu, Y. Evolution of the Mineralocorticoid Receptor 1st edn. (Elsevier Inc., Amsterdam, 2019).


    Google Scholar
     

  • 54.

    McCormick, S. D. Hormonal control of gill Na+, K+-ATPase and chloride cell function. In Fish Physiology: Cellular and Molecular Approaches to Fish Ionic Regulation Vol. 14 (eds Wood, C. M. & Shuttleworth, T. J.) 285–315 (Academic Press Inc, San Diego, 1995).


    Google Scholar
     

  • 55.

    McCormick, S. D. Methods for non-lethal gill biopsy and measurement of Na+, K+-ATPase activity. Can. J. Fish. Aquat. Sci. 50, 656–658 (1993).

    CAS 

    Google Scholar
     

  • 56.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *