A 2,000-year Bayesian NAO reconstruction from the Iberian Peninsula


  • 1.

    Pinto, J. G. & Raible, C. C. Past and recent changes in the North Atlantic oscillation. Wiley Interdiscip. Rev. Clim. Change 3, 79–90 (2012).


    Google Scholar
     

  • 2.

    Jerez, S. et al. The impact of the North Atlantic Oscillation on renewable energy resources in Southwestern Europe. J. Appl. Meteorol. Climatol. 52, 2204–2225 (2013).

    ADS 

    Google Scholar
     

  • 3.

    Bastos, A. et al. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling. Nat. Commun. 7, 1–9 (2016).


    Google Scholar
     

  • 4.

    Zubiate, L., McDermott, F., Sweeney, C. & O’Malley, M. Spatial variability in winter NAO—wind speed relationships in western Europe linked to concomitant states of the East Atlantic and Scandinavian patterns. Q. J. R. Meteorol. Soc. 143, 552–562 (2017).

    ADS 

    Google Scholar
     

  • 5.

    Dunstone, N. et al. Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat. Geosci. 9, 809–814 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Scaife, A. A. et al. Skillful long-range prediction of European and North American winters. Geophys. Res. Lett. 41, 2514–2519 (2014).

    ADS 

    Google Scholar
     

  • 7.

    Rogers, J. C. The Association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Weather Rev. 112, 1999–2015 (1984).

    ADS 

    Google Scholar
     

  • 8.

    Glueck, M. F. & Stockton, C. W. Reconstruction of the North Atlantic Oscillation, 1429–1983. Int. J. Climatol. 21, 1453–1465 (2001).


    Google Scholar
     

  • 9.

    Luterbacher, J. et al. Extending North Atlantic oscillation reconstructions back to 1500. Atmos. Sci. Lett. 2, 114–124 (2001).

    ADS 

    Google Scholar
     

  • 10.

    Goodkin, N. F., Hughen, K. A., Doney, S. C. & Curry, W. B. Increased multidecadal variability of the North Atlantic Oscillation since 1781. Nat. Geosci. 1, 844–848 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Trouet, V. et al. Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324, 78–80 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Olsen, J., Anderson, N. J. & Knudsen, M. F. Variability of the North Atlantic Oscillation over the past 5,200 years. Nat. Geosci. 5, 808–812 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Ortega, P. et al. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523, 71–74 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Michel, S. et al. Reconstructing climatic modes of variability from proxy records using ClimIndRec version 1.0. Geosci. Model Dev. 13, 841–858 (2020).

    ADS 

    Google Scholar
     

  • 15.

    Sjolte, J. et al. Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction. Clim. Past 14, 1179–1194 (2018).


    Google Scholar
     

  • 16.

    Cook, E. R. et al. A Euro-Mediterranean tree-ring reconstruction of the winter NAO index since 910 C.E. Clim. Dyn. 53, 1567–1580 (2019).


    Google Scholar
     

  • 17.

    Baker, A., Hellstrom, J. C., Kelly, B. F. J., Mariethoz, G. & Trouet, V. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Sci. Rep. 5, 1–8 (2015).


    Google Scholar
     

  • 18.

    Faust, J. C., Fabian, K., Milzer, G., Giraudeau, J. & Knies, J. Norwegian fjord sediments reveal NAO related winter temperature and precipitation changes of the past 2800 years. Earth Planet. Sci. Lett. 435, 84–93 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Lehner, F., Raible, C. C. & Stocker, T. F. Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Q. Sci. Rev. 45, 85–94 (2012).

    ADS 

    Google Scholar
     

  • 20.

    Raible, C. C. et al. Climate variability-observations, reconstructions, and model simulations for the Atlantic-European and Alpine region from 1500–2100 AD. Clim. Change 79, 9–29 (2006).

    ADS 

    Google Scholar
     

  • 21.

    Mellado-Cano, J., Barriopedro, D., García-Herrera, R., Trigo, R. M. & Hernández, A. Examining the North Atlantic Oscillation, East Atlantic pattern, and jet variability since 1685. J. Clim. 32, 6285–6298 (2019).

    ADS 

    Google Scholar
     

  • 22.

    Moore, G. W. K. & Renfrew, I. A. Cold European winters: interplay between the NAO and the East Atlantic mode. Atmos. Sci. Lett. 13, 1–8 (2012).

    ADS 

    Google Scholar
     

  • 23.

    Comas-Bru, L. & McDermott, F. Impacts of the EA and SCA patterns on the European twentieth century NAO–winter climate relationship. Q. J. R. Meteorol. Soc. 140, 354–363 (2014).

    ADS 

    Google Scholar
     

  • 24.

    Chafik, L., Nilsen, J. E. Ø & Dangendorf, S. Impact of North Atlantic teleconnection patterns on Northern European sea level. J. Mar. Sci. Eng. 5, 43 (2017).


    Google Scholar
     

  • 25.

    Josey, S. A. & Marsh, R. Surface freshwater flux variability and recent freshening of the North Atlantic in the eastern subpolar gyre. J. Geophys. Res. Oceans 110, C05008 (2005).

    ADS 

    Google Scholar
     

  • 26.

    Barnston, A. G. & Livezey, R. E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 115, 1083–1126 (1987).

    ADS 

    Google Scholar
     

  • 27.

    Bueh, C. & Nakamura, H. Scandinavian pattern and its climatic impact. Q. J. R. Meteorol. Soc. 133, 2117–2131 (2007).

    ADS 

    Google Scholar
     

  • 28.

    Blaauw, M., Bakker, R., Christen, J. A., Hall, V. A. & van der Plicht, J. A Bayesian framework for age modeling of radiocarbon-dated peat deposits: case studies from the Netherlands. Radiocarbon 49, 357–367 (2007).

    CAS 

    Google Scholar
     

  • 29.

    Ramsey, C. B. Deposition models for chronological records. Q. Sci. Rev. 27, 42–60 (2008).

    ADS 

    Google Scholar
     

  • 30.

    Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R. Stat. Soc. Ser. C Appl. Stat. 57, 399–418 (2008).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 31.

    Parnell, A. C. et al. Bayesian inference for palaeoclimate with time uncertainty and stochastic volatility. J. R. Stat. Soc. Ser. C Appl. Stat. 64, 115–138 (2015).

    MathSciNet 

    Google Scholar
     

  • 32.

    Haslett, J. et al. Bayesian palaeoclimate reconstruction. J. R. Stat. Soc. Ser. A Stat. Soc. 169, 395–438 (2006).

    MathSciNet 

    Google Scholar
     

  • 33.

    Tingley, M. P. & Huybers, P. A Bayesian algorithm for reconstructing climate anomalies in space and time. Part I: development and applications to paleoclimate reconstruction problems. J. Clim. 23, 2759–2781 (2009).

    ADS 

    Google Scholar
     

  • 34.

    Cahill, N., Kemp, A. C., Horton, B. P. & Parnell, A. C. A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change. Clim. Past 12, 525–542 (2016).


    Google Scholar
     

  • 35.

    Birks, H. J. B., Heiri, O., Seppä, H. & Bjune, A. E. Strengths and weaknesses of quantitative climate reconstructions based on late-quaternary. Open Ecol. J. 3, 68–110 (2010).


    Google Scholar
     

  • 36.

    Li, B., Nychka, D. W. & Ammann, C. M. The value of multiproxy reconstruction of past climate. J. Am. Stat. Assoc. 105, 883–895 (2010).

    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 37.

    Guiot, J. & de Vernal, A. Thirteen transfer functions: methods for quantitative paleoceanography based on microfossils. In Developments in Marine Geology (eds Hillaire-Marcel, C. & De Vernal, A.) vol. 1 523–563 (Elsevier, Amsterdam, 2007).


    Google Scholar
     

  • 38.

    Hall, R. J., Scaife, A. A., Hanna, E., Jones, J. M. & Erdélyi, R. Simple statistical probabilistic forecasts of the winter NAO. Weather Forecast. 32, 1585–1601 (2017).

    ADS 

    Google Scholar
     

  • 39.

    Deser, C., Hurrell, J. W. & Phillips, A. S. The role of the North Atlantic Oscillation in European climate projections. Clim. Dyn. 49, 3141–3157 (2017).


    Google Scholar
     

  • 40.

    Ineson, S. et al. Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci. 4, 753–757 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Swingedouw, D. et al. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nat. Commun. 6, 1–12 (2015).


    Google Scholar
     

  • 42.

    Chiodo, G., Oehrlein, J., Polvani, L. M., Fyfe, J. C. & Smith, A. K. Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation. Nat. Geosci. 12, 94–99 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Swingedouw, D. et al. Impact of explosive volcanic eruptions on the main climate variability modes. Glob. Planet. Change 150, 24–45 (2017).

    ADS 

    Google Scholar
     

  • 44.

    Wanner, H., Mercolli, L., Grosjean, M. & Ritz, S. P. Holocene climate variability and change; a data-based review. J. Geol. Soc. 172, 254–263 (2015).

    ADS 

    Google Scholar
     

  • 45.

    Brugnara, Y., Brönnimann, S., Luterbacher, J. & Rozanov, E. Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets. Atmos. Chem. Phys. 13, 6275–6288 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Woollings, T., Lockwood, M., Masato, G., Bell, C. & Gray, L. Enhanced signature of solar variability in Eurasian winter climate. Geophys. Res. Lett. 37, L20805 (2010).

    ADS 

    Google Scholar
     

  • 47.

    Chiodo, G., Calvo, N., Marsh, D. R. & Garcia-Herrera, R. The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model. J. Geophys. Res. Atmos. 117, D06109 (2012).

    ADS 

    Google Scholar
     

  • 48.

    Thiéblemont, R., Matthes, K., Omrani, N.-E., Kodera, K. & Hansen, F. Solar forcing synchronizes decadal North Atlantic climate variability. Nat. Commun. 6, 8268 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Scaife, A. A. et al. A mechanism for lagged North Atlantic climate response to solar variability. Geophys. Res. Lett. 40, 434–439 (2013).

    ADS 

    Google Scholar
     

  • 50.

    Fritts, D. C. Gravity waves: overview. In Encyclopedia of Atmospheric Sciences 2nd edn (eds North, G. R. et al.) 141–152 (Academic Press, Boca Raton, 2015). https://doi.org/10.1016/B978-0-12-382225-3.00234-6.


    Google Scholar
     

  • 51.

    Martin-Puertas, C. et al. Regional atmospheric circulation shifts induced by a grand solar minimum. Nat. Geosci. 5, 397–401 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Gray, L. J. et al. A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns. J. Geophys. Res. Atmos. 118, 13405–13420 (2013).

    ADS 

    Google Scholar
     

  • 53.

    Lockwood, M. Solar influence on global and regional climates. Surv. Geophys. 33, 503–534 (2012).

    ADS 

    Google Scholar
     

  • 54.

    Barriopedro, D., García-Herrera, R. & Huth, R. Solar modulation of Northern Hemisphere winter blocking. J. Geophys. Res. Atmos. 113, D14118 (2008).

    ADS 

    Google Scholar
     

  • 55.

    Hernández, A. et al. Sensitivity of two Iberian lakes to North Atlantic atmospheric circulation modes. Clim. Dyn. 45, 3403–3417 (2015).


    Google Scholar
     

  • 56.

    Trigo, R. M. et al. The impact of North Atlantic wind and cyclone trends on European precipitation and significant wave height in the atlantic. Ann. N. Y. Acad. Sci. 1146, 212–234 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • 57.

    Comas-Bru, L. & Hernández, A. Reconciling North Atlantic climate modes: revised monthly indices for the East Atlantic and the Scandinavian patterns beyond the 20th century. Earth Syst. Sci. Data 10, 2329–2344 (2018).

    ADS 

    Google Scholar
     

  • 58.

    Sánchez-López, G. et al. The effects of the NAO on the ice phenology of Spanish alpine lakes. Clim. Change 130, 101–113 (2015).

    ADS 

    Google Scholar
     

  • 59.

    Gouveia, C., Trigo, R. M., DaCamara, C. C., Libonati, R. & Pereira, J. M. C. The North Atlantic Oscillation and European vegetation dynamics. Int. J. Climatol. 28, 1835–1847 (2008).


    Google Scholar
     

  • 60.

    Sánchez-López, G. et al. Climate reconstruction for the last two millennia in central Iberia: The role of East Atlantic (EA), North Atlantic Oscillation (NAO) and their interplay over the Iberian Peninsula. Q. Sci. Rev. 149, 135–150 (2016).

    ADS 

    Google Scholar
     

  • 61.

    Toohey, M. & Sigl, M. Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth Syst. Sci. Data 9, 809–831 (2017).

    ADS 

    Google Scholar
     

  • 62.

    Usoskin, I. G., Gallet, Y., Lopes, F., Kovaltsov, G. A. & Hulot, G. Solar activity during the Holocene: the Hallstatt cycle and its consequence for grand minima and maxima. Astron. Astrophys. 587, A150 (2016).

    ADS 

    Google Scholar
     

  • 63.

    Esper, J. et al. Long-term drought severity variations in Morocco. Geophys. Res. Lett. 34, L17702 (2007).

    ADS 

    Google Scholar
     

  • 64.

    Lean, J. L. Sun-Climate Connections. Oxf. Res. Encycl. Clim. Sci. https://doi.org/10.1093/acrefore/9780190228620.013.9 (2017).

    Article 

    Google Scholar
     

  • 65.

    Haigh, P. J. Solar influences on Climate 20 (2011).

  • 66.

    Lean, J. L. & Rind, D. H. How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 35, L18701 (2008).

    ADS 

    Google Scholar
     

  • 67.

    Jones, P. D., Jonsson, T. & Wheeler, D. Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433–1450 (1997).


    Google Scholar
     

  • 68.

    Vinther, B. M., Johnsen, S. J., Andersen, K. K., Clausen, H. B. & Hansen, A. W. NAO signal recorded in the stable isotopes of Greenland ice cores. Geophys. Res. Lett. 30, 1387 (2003).

    ADS 

    Google Scholar
     

  • 69.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations: the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).


    Google Scholar
     

  • 70.

    Parnell, A. C. et al. Joint palaeoclimate reconstruction from pollen data via forward models and climate histories. Q. Sci. Rev. 151, 111–126 (2016).

    ADS 

    Google Scholar
     

  • 71.

    Juggins, S. & Birks, H. J. B. Quantitative environmental reconstructions from biological data. In Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques (eds Birks, H. J. B. et al.) 431–494 (Springer, Netherlands, 2012).


    Google Scholar
     

  • 72.

    Petzoldt, T. & Rinke, K. simecol: an object-oriented framework for ecological modeling in R. J. Stat. Softw. 22, 1–31 (2007).


    Google Scholar
     

  • 73.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2016.

  • 74.

    Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Work. Pap. 8, 435–444 (2003).


    Google Scholar
     

  • 75.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    MATH 

    Google Scholar
     

  • 76.

    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).

    MathSciNet 

    Google Scholar
     

  • 77.

    Compo, G. P. et al. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *