A general dimension of genetic sharing across diverse cognitive traits inferred from molecular data


  • 1.

    Deary, I. J., Strand, S., Smith, P. & Fernandes, C. Intelligence and educational achievement. Intelligence 35, 13–21 (2007).

  • 2.

    Strenze, T. Intelligence and socioeconomic success: a meta-analytic review of longitudinal research. Intelligence 35, 401–426 (2007).

  • 3.

    Calvin, C. M. et al. Childhood intelligence in relation to major causes of death in 68 year follow-up: prospective population study. BMJ 357, j2708 (2017).

  • 4.

    Spearman, C. ‘General intelligence,’ objectively determined and measured. Am. J. Psychol. 15, 201–292 (1904).

  • 5.

    Carroll, J. B. in Human Cognitive Abilities: A Survey of Factor-Analytic Studies (Cambridge Univ. Press, 1993).

  • 6.

    Johnson, W., te Nijenhuis, J. & Bouchard, T. J. Still just 1 g: consistent results from five test batteries. Intelligence 36, 81–95 (2008).

    Article 

    Google Scholar
     

  • 7.

    Tucker-Drob, E. M. Differentiation of cognitive abilities across the life span. Dev. Psychol. 45, 1097–1118 (2009).

    Article 

    Google Scholar
     

  • 8.

    Cox, S. R., Ritchie, S. J., Fawns-Ritchie, C., Tucker-Drob, E. M. & Deary, I. J. Structural brain imaging correlates of general intelligence in UK Biobank. Intelligence 76, 101376 (2019).

  • 9.

    Deary, I. J. Looking Down on Human Intelligence: From Psychometrics to the Brain (Cambridge Univ. Press, 2000).

  • 10.

    Deary, I. J., Penke, L. & Johnson, W. The neuroscience of human intelligence differences. Nat. Rev. Neurosci. 11, 201–211 (2010).

  • 11.

    Haier, R. J. The Neuroscience of Intelligence (Cambridge Univ. Press, 2016).

  • 12.

    Kovas, Y. & Plomin, R. Generalist genes: implications for the cognitive sciences. Trends Cogn. Sci. 10, 198–203 (2006).

  • 13.

    Plomin, R. & Deary, I. J. Genetics and intelligence differences: five special findings. Mol. Psychiatry 20, 98–108 (2015).

  • 14.

    Engelhardt, L. E. et al. Strong genetic overlap between executive functions and intelligence. J. Exp. Psychol. Gen. 145, 1141–1159 (2016).

  • 15.

    Panizzon, M. S. et al. Genetic and environmental influences on general cognitive ability: is g a valid latent construct? Intelligence 43, 65–76 (2014).

  • 16.

    Petrill, S. A. Molarity versus modularity of cognitive functioning? A behavioral genetic perspective. Curr. Dir. Psychol. Sci. https://doi.org/10.1111/1467-8721.ep11512833 (1997).

  • 17.

    Petrill, S. A. et al. The genetic and environmental relationship between general and specific cognitive abilities in twins age 80 and older. Psychol. Sci. https://doi.org/10.1111/1467-9280.00035 (1998).

  • 18.

    Rijsdijk, F. V., Vernon, P. A. & Boomsma, D. I. Application of hierarchical genetic models to Raven and WAIS subtests: a Dutch twin study. Behav. Genet. 32, 199–210 (2002).

  • 19.

    Davies, G. et al. Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat. Commun. 9, 2098 (2018).

  • 20.

    Hill, W. D. et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol. Psychiatry 24, 169–181 (2019).

  • 21.

    Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912–919 (2018).

  • 22.

    Davies, G. et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N = 112,151). Mol. Psychiatry 21, 758–767 (2016).

  • 23.

    Debette, S. et al. Genome-wide studies of verbal declarative memory in nondemented older people: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2014.08.027 (2015).

  • 24.

    Schmidt, F. L. Beyond questionable research methods: the role of omitted relevant research in the credibility of research. Arch. Sci. Psychol. 5, 32–41 (2017).

  • 25.

    Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

  • 26.

    Fawns-Ritchie, C. & Deary, I. J. Reliability and validity of the UK Biobank cognitive tests. PloS ONE 15, e0231627 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

  • 28.

    Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M. & Wray, N. R. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 28, 2540–2542 (2012).

  • 29.

    Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. https://doi.org/10.1016/j.ajhg.2010.11.011 (2011).

  • 30.

    Marioni, R. E. et al. GWAS on family history of Alzheimer’s disease. Transl. Psychiatry 8, 99 (2018).

  • 31.

    Hagenaars, S. P. et al. Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N = 112 151) and 24 GWAS consortia. Mol. Psychiatry 21, 1624–1632 (2016).

  • 32.

    Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

  • 33.

    Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 50, 229–237 (2018).

  • 34.

    Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

  • 35.

    Lee, P. H. et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell https://doi.org/10.1016/j.cell.2019.11.020 (2019).

  • 36.

    Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

  • 37.

    Zhao, B. et al. Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n = 17,706). Mol. Psychiatry https://doi.org/10.1038/s41380-019-0569-z (2019).

  • 38.

    Timmers, P. R. et al. Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances. eLife 8, e39856 (2019).

  • 39.

    Anttila, V. et al. Analysis of shared heritability in common disorders of the brain. Science 360, 6395 (2018).

  • 40.

    Smith, B. H. et al. Generation Scotland: The Scottish Family Health Study; a new resource for researching genes and heritability. BMC Med. Genet. 7, 74 (2006).

  • 41.

    Smith, B. H. et al. Cohort profile: Generation Scotland: Scottish Family Health Study (GS: SFHS). The study, its participants and their potential for genetic research on health and illness. Int. J. Epidemiol. 42, 689–700 (2013).

  • 42.

    Jensen, A. R. Clocking the mind: mental chronometry and individual differences. Pers. Psychol. https://doi.org/10.1111/j.1744-6570.2008.00111_7.x (2008).

  • 43.

    Demange, P. A. et al. Investigating the genetic architecture of non-cognitive skills using GWAS-by-subtraction. Preprint at bioRxiv https://doi.org/10.1101/2020.01.14.905794 (2020).

  • 44.

    Kovacs, K. & Conway, A. R. A. process overlap theory: a unified account of the general factor of intelligence. Psychol. Inq. 27, 151–177 (2016).

  • 45.

    Bartholomew, D. J., Deary, I. J. & Lawn, M. A new lease of life for Thomson’s bonds model of intelligence. Psychol. Rev. 116, 567–579 (2009).

  • 46.

    Ceci, S. J. On Intelligence–More or Less: A Bio-ecological Treatise on Intellectual Development (Prentice Hall, 1990).

  • 47.

    Van Der Maas, H. L. J. et al. A dynamical model of general intelligence: the positive manifold of intelligence by mutualism. Psychol. Rev. 113, 842–861 (2006).

  • 48.

    Dickens, W. T. What is g? Brookings Rev. https://www.brookings.edu/research/what-is-g/ (2007).

  • 49.

    Tucker-Drob, E. M., Brandmaier, A. M. & Lindenberger, U. Coupled cognitive changes in adulthood: a meta-analysis. Psychol. Bull. 145, 273–301 (2019).

    Article 

    Google Scholar
     

  • 50.

    Karen, R. et al. COGNITO: computerized assessment of information processing. J. Psychol. Psychother. https://doi.org/10.4172/2161-0487.1000136 (2014).

  • 51.

    Lyall, D. M. et al. Cognitive test scores in UK biobank: data reduction in 480,416 participants and longitudinal stability in 20,346 participants. PLoS ONE 11, e0156366 (2016).

  • 52.

    Reitan, R. M. & Wolfson, D. The Halstead–Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation Vol. 4 (Neuropsychology Press, 1985).

  • 53.

    Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

  • 54.

    Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

  • 55.

    Rosseel, Y. Lavaan: an R package for structural equation modeling. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i02 (2012).

  • 56.

    Hu, L. T. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Modeling 6, 1–55 (1999).

  • 57.

    Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

  • 58.

    Pe’er, I., Yelensky, R., Altshuler, D. & Daly, M. J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).

    Article 

    Google Scholar
     

  • 59.

    Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

  • 60.

    Kerr, S. M. et al. Pedigree and genotyping quality analyses of over 10,000 DNA samples from the Generation Scotland: Scottish Family Health Study. BMC Med. Genet. 14, 38 (2013).

  • 61.

    Euesden, J., Lewis, C. M. & O’Reilly, P. F. PRSice: polygenic risk score software. Bioinformatics 31, 1466–1468 (2015).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *