A genome-wide association study reveals a substantial genetic basis underlying the Ebbinghaus illusion


  • 1.

    Boelte S, Holtmann M, Poustka F, Scheurich A, Schmidt L. Gestalt perception and local-global processing in high-functioning autism. J Autism Dev Disord. 2007;37:1493–504.


    Google Scholar
     

  • 2.

    Dakin S, Frith U. Vagaries of visual perception in autism. Neuron. 2005;48:497–507.

    PubMed 

    Google Scholar
     

  • 3.

    Manning C, Morgan MJ, Allen CTW, Pellicano E. Susceptibility to Ebbinghaus and Muller-Lyer illusions in autistic children: a comparison of three different methods. Mol Autism. 2017;8:16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Uhlhaas PJ, Phillips WA, Mitchell G, Silverstein SM. Perceptual grouping in disorganized schizophrenia. Psychiatry Res. 2006;145:105–17.

    PubMed 

    Google Scholar
     

  • 5.

    Bressan P, Kramer P. The relation between cognitive-perceptual schizotypal traits and the Ebbinghaus size-illusion is mediated by judgment time. Front Psychol. 2013;4:343.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Doherty MJ, Campbell NM, Tsuji H, Phillips WA. The Ebbinghaus illusion deceives adults but not young children. Dev Sci. 2010;13:714–21.

    PubMed 

    Google Scholar
     

  • 7.

    Bremner AJ, Doherty MJ, Caparos S, de Fockert J, Linnell KJ, Davidoff J. Effects of culture and the urban environment on the development of the Ebbinghaus Illusion. Child Dev. 2016;87:962–81.

    PubMed 

    Google Scholar
     

  • 8.

    Yamazaki Y, Otsuka Y, Kanazawa S, Yamaguchi MK. Perception of the Ebbinghaus illusion in 5-to 8-month-old infants. Jpn Psychol Res. 2010;52:33–40.


    Google Scholar
     

  • 9.

    Coren S, Porac C. Heritability in visual-geometric illusions: a family study. Perception. 1979;8:303–9.

    PubMed 

    Google Scholar
     

  • 10.

    Schwarzkopf DS, Song C, Rees G. The surface area of human V1 predicts the subjective experience of object size. Nat Neurosci. 2011;14:28–30.

    PubMed 

    Google Scholar
     

  • 11.

    Chen CH, Peng Q, Schork AJ, Lo MT, Fan CC, Wang Y, et al. Large-scale genomics unveil polygenic architecture of human cortical surface area. Nat Commun. 2015;6:7.


    Google Scholar
     

  • 12.

    Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Chen B, Zhu Z, Na R, Fang W, Zhang W, Zhou Q, et al. Genomic analyses of visual cognition: perceptual rivalry and top-down control. J Neurosci. 2018;38:9668–78.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Zhu Z, Chen B, Na R, Fang W, Zhang W, Zhou Q, et al. Heritability of human visual contour integration-an integrated genomic study. Eur J Hum Genet. 2019;27:1867–75.

    PubMed 

    Google Scholar
     

  • 15.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    PubMed 

    Google Scholar
     

  • 17.

    Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–U131.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Visscher PM, Hemani G, Vinkhuyzen AAE, Chen G-B, Lee SH, Wray NR, et al. Statistical power to detect genetic (Co)variance of complex traits using snp data in unrelated samples. Plos Genet. 2014;10:e1004269.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands of genomes. Nat Methods. 2012;9:179–81.


    Google Scholar
     

  • 20.

    Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44:955.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. Plos Genet. 2009;5:e1000529.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39:906–13.

    PubMed 

    Google Scholar
     

  • 23.

    Gauderman WJ, Morrison JM, Morrison W. QUANTO 1.1: a computer program for power and sample size calculations for genetic-epidemiology studies. 2006. https://hydrauscedu/gxe

  • 24.

    Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. Plos Comput Biol. 2015;11:e1004219.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421.

    PubMed Central 

    Google Scholar
     

  • 27.

    King DJ, Hodgekins J, Chouinard PA, Chouinard V-A, Sperandio I. A review of abnormalities in the perception of visual illusions in schizophrenia. Psychonomic Bull Rev. 2017;24:734–51.


    Google Scholar
     

  • 28.

    Uhlhaas PJ, Silverstein SM, Phillips WA, Lovell PG. Evidence for impaired visual context processing in schizotypy with thought disorder. Schizophrenia Res. 2004;68:249–60.


    Google Scholar
     

  • 29.

    Lam M, Chen C-Y, Li Z, Martin AR, Bryois J, Ma X, et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet. 2019;51:1670.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet. 2017;49:1576.

    PubMed 

    Google Scholar
     

  • 31.

    Yu HG, Yan HK, Li JM, Li ZP, Zhang XD, Ma YC, et al. Common variants on 2p16.1, 6p22.1 and 10q24.32 are associated with schizophrenia in Han Chinese population. Mol Psychiatr. 2017;22:954–60.


    Google Scholar
     

  • 32.

    Needleman LA, McAllister AK. The major histocompatibility complex and autism spectrum disorder. Dev Neurobiol. 2012;72:1288–301.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ. Functional requirement for class I MHC in CNS development and plasticity. Sci (N. Y, NY). 2000;290:2155–9.


    Google Scholar
     

  • 34.

    Higenell V, Ruthazer ES. Layers upon Layers: MHC Class I acts in the retina to influence thalamic segregation. Neuron. 2010;65:439–41.

    PubMed 

    Google Scholar
     

  • 35.

    Lee H, Brott BK, Kirkby LA, Adelson JD, Cheng S, Feller MB, et al. Synapse elimination and learning rules co-regulated by MHC class I H2-D-b. Nature. 2014;509:195.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Braskie MN, Jahanshad N, Stein JL, Barysheva M, Johnson K, McMahon KL, et al. Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults. J Neurosci. 2012;32:5964–72.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Sawal HA, Ullah MI, Ahmad A, Nasir A, Amar A, Khan EA, et al. Homozygous mutations in NTRK1 gene underlie congenital insensitivity to pain with anhidrosis in Pakistani families. Neurology. Asia. 2016;21:129–36.


    Google Scholar
     

  • 38.

    Liu Z, Liu J, Liu G, Cao W, Liu S, Chen Y, et al. Phenotypic heterogeneity of intellectual disability in patients with congenital insensitivity to pain with anhidrosis: a case report and literature review. J Int Med Res. 2018;46:2445–57.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Swaminathan S, Kim S, Shen L, Risacher SL, Foroud T, Pankratz N, et al. Genomic copy number analysis in alzheimer’s disease and mild cognitive impairment: an ADNI study. Int J Alzheimer’s Dis. 2011;2011:729478.


    Google Scholar
     

  • 40.

    Uys GM, Ramburan A, Loos B, Kinnear CJ, Korkie LJ, Mouton J, et al. Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C. Bmc Cell Biol. 2011;12:18.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T, et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet. 2008;40:1466–71.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    McLellan AS, Fischer B, Dveksler G, Hori T, Wynne F, Ball M, et al. Structure and evolution of the mouse pregnancy-specific glycoprotein (Psg) gene locus. BMC Genom. 2005;6:4.


    Google Scholar
     

  • 43.

    Shannon RW, Patrick CJ, Jiang Y, Bernat E, He S. Genes contribute to the switching dynamics of bistable perception. J Vis. 2011;11:8, 1-7.

    PubMed 

    Google Scholar
     

  • 44.

    Wang Y, Wang L, Xu Q, Liu D, Chen LH, Troje NF, et al. Heritable aspects of biological motion perception and its covariation with autistic traits. Proc Natl Acad Sci USA. 2018;115:1937–42.

    PubMed 

    Google Scholar
     

  • 45.

    Shakeshaft NG, Plomin R. Genetic specificity of face recognition. Proc Natl Acad Sci USA. 2015;112:12887–92.

    PubMed 

    Google Scholar
     

  • 46.

    Wilmer JB, Germine L, Chabris CF, Chatterjee G, Williams M, Loken E, et al. Human face recognition ability is specific and highly heritable. Proc Natl Acad Sci USA. 2010;107:5238–41.

    PubMed 

    Google Scholar
     

  • 47.

    Haak KV. Genetic influence on contrast sensitivity in young adults. Acta Ophthalmologica 2019;97:E663–4.

    PubMed 

    Google Scholar
     

  • 48.

    Coleman JRI, Lester KJ, Keers R, Munafo MR, Breen G, Eley TC. Genome-wide association study of facial emotion recognition in children and association with polygenic risk for mental health disorders. Am J Med Genet Part B-Neuropsychiatr Genet. 2017;174:701–11.


    Google Scholar
     

  • 49.

    Warrier V, Grasby KL, Uzefovsky F, Toro R, Smith P, Chakrabarti B, et al. Genome-wide meta-analysis of cognitive empathy: heritability, and correlates with sex, neuropsychiatric conditions and cognition. Mol Psychiatr. 2018;23:1402–9.


    Google Scholar
     

  • 50.

    Bosten JM, Goodbourn PT, Lawrance-Owen AJ, Bargary G, Hogg RE, Mollon JD. A population study of binocular function. Vis Res. 2015;110:34–50.

    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *