A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation


  • 1.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).


    Google Scholar
     

  • 2.

    Brander, L. M. et al. Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosyst. Serv. 1, 62–69 (2012).


    Google Scholar
     

  • 3.

    UNEP. The Importance of Mangroves to People: A Call to Action (United Nations Environment Programme World Conservation Monitoring Centre, Cambridge, 2014).


    Google Scholar
     

  • 4.

    Spalding, M. & Parrett, C. L. Global patterns in mangrove recreation and tourism. Mar. Policy 110, 103540 (2019).


    Google Scholar
     

  • 5.

    Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: One of the world’s threatened major tropical environments. Bioscience 51, 807–815 (2001).


    Google Scholar
     

  • 6.

    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. 113, 344–349 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 352, 134–145 (2015).


    Google Scholar
     

  • 8.

    de Groot, R. et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 1, 50–61 (2012).


    Google Scholar
     

  • 9.

    Himes-Cornell, A., Pendleton, L. & Atiyah, P. Valuing ecosystem services from blue forests: A systematic review of the valuation of salt marshes, sea grass beds and mangrove forests. Ecosyst. Serv. 30, 36–48 (2018).


    Google Scholar
     

  • 10.

    Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Spalding, M. D., Kainumu, M. & Collins, L. World Atlas of Mangroves (Earthscan, London, 2010).


    Google Scholar
     

  • 12.

    Ewel, K. C., Twilley, R. R. & Ong, J. Different kinds of mangrove forests provide different goods and services. Glob. Ecol. Biogeogr. Lett. 7, 83–94 (1998).


    Google Scholar
     

  • 13.

    Twilley, R. R., Rovai, A. S. & Riul, P. Coastal morphology explains global blue carbon distributions. Front. Ecol. Environ. 16, 503–508 (2018).


    Google Scholar
     

  • 14.

    Sanderman, J. et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13, 055002 (2018).

    ADS 

    Google Scholar
     

  • 15.

    Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Koch, E. W. et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 7, 29–37 (2009).


    Google Scholar
     

  • 18.

    Baker, R., Sheaves, M. & Johnston, R. Geographic variation in mangrove flooding and accessibility for fishes and nektonic crustaceans. Hydrobiologia 762, 1–14 (2015).

    CAS 

    Google Scholar
     

  • 19.

    Ward, R. D., Friess, D. A., Day, R. H. & Mackenzie, R. A. Impacts of climate change on mangrove ecosystems: A region by region overview. Ecosyst. Heal. Sustain. 2, e01211 (2016).


    Google Scholar
     

  • 20.

    Balke, T. & Friess, D. A. Geomorphic knowledge for mangrove restoration: A pan-tropical categorization. Earth Surf. Process. Landforms 41, 231–239 (2016).

    ADS 

    Google Scholar
     

  • 21.

    Spalding, M. D., Brumbaugh, R. D. & Landis, E. Atlas of Ocean Wealth (The Nature Conservancy, Arlington, 2016).


    Google Scholar
     

  • 22.

    Spalding, M., Blasco, F. & Field, C. World Mangrove Atlas (The International Society for Mangrove Ecosystems, Okinawa, 1997).


    Google Scholar
     

  • 23.

    Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).


    Google Scholar
     

  • 24.

    Mahoney, P. C. & Bishop, M. J. Are geomorphological typologies for estuaries also useful for classifying their ecosystems?. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1200–1208 (2018).


    Google Scholar
     

  • 25.

    Bunting, P. et al. The Global Mangrove Watch—A new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    ADS 

    Google Scholar
     

  • 26.

    Thom, B. G. Coastal landforms and geomorphic processes. In The Mangrove Ecosystem: Research Methods (eds Snedaker, S. C. & Snedaker, J. G.) 18–35 (UNESCO, Paris, 1984).


    Google Scholar
     

  • 27.

    Woodroffe, C. Mangrove sediments and geomorphology. In Tropical Mangrove Ecosystems (eds Robertson, A. I. & Alongi, D. M.) 7–41 (American Geophysical Union, Washington, 1992).


    Google Scholar
     

  • 28.

    Twilley, R. R. & Rivera-Monroy, V. H. Ecogeomorphic models of nutrient biogeochemistry for mangrove wetlands. In Coastal Wetlands: An Integrated Ecosystem Approach (eds Perillo, G. M. E. et al.) 641–684 (Elsevier, New York, 2009).


    Google Scholar
     

  • 29.

    Woodroffe, C. D. et al. Mangrove sedimentation and response to relative sea-level rise. Ann. Rev. Mar. Sci. 8, 243–266 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Reed, D. J., Davidson-Arnott, R. & Perillo, G. M. Estuaries, coastal marshes, tidal flats and coastal dunes. In Geomorphology and Global Environmental Change (eds Slaymaker, O. et al.) 130–157 (Cambridge University Press, Cambridge, 2009).


    Google Scholar
     

  • 31.

    Walsh, J. P. & Nittrouer, C. A. Mangrove-bank sedimentation in a mesotidal environment with large sediment supply, Gulf of Papua. Mar. Geol. 208, 225–248 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Swales, A., Bentley, S. J. & Lovelock, C. E. Mangrove-forest evolution in a sediment-rich estuarine system: Opportunists or agents of geomorphic change?. Earth Surf. Process. Landforms 40, 1672–1687 (2015).

    ADS 

    Google Scholar
     

  • 33.

    Proisy, C. et al. Mud bank colonization by opportunistic mangroves: A case study from French Guiana using lidar data. Cont. Shelf Res. 29, 632–641 (2009).

    ADS 

    Google Scholar
     

  • 34.

    Nascimento, W. R., Souza-Filho, P. W. M., Proisy, C., Lucas, R. M. & Rosenqvist, A. Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery. Estuar. Coast. Shelf Sci. 117, 83–93 (2013).

    ADS 

    Google Scholar
     

  • 35.

    Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    McKee, K. L. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar. Coast. Shelf Sci. 91, 475–483 (2011).

    ADS 

    Google Scholar
     

  • 37.

    McKee, K. L. & Vervaeke, W. C. W. C. Impacts of human disturbance on soil erosion potential and habitat stability of mangrove-dominated islands in the Pelican Cays and Twin Cays ranges, Belize. Smithson. Contrib. Mar. Sci. 38, 415–427 (2011).


    Google Scholar
     

  • 38.

    Worthington, T. & Spalding, M. Mangrove Restoration Potential: A Global Map Highlighting a Critical Opportunity. https://doi.org/10.17863/CAM.39153 (2018).

    Article 

    Google Scholar
     

  • 39.

    Kjerfve, B. et al. Morphodynamics of muddy environments along the Atlantic coasts of North and South America. In Muddy Coasts of the World: Processes, Deposits and Function (eds Healy, T. et al.) 479–532 (Elsevier, New York, 2002).


    Google Scholar
     

  • 40.

    Adame, M. F. et al. Mangroves in arid regions: Ecology, threats, and opportunities. Estuarine Coast. Shelf Sci. https://doi.org/10.1016/j.ecss.2020.106796 (2020).

    Article 

    Google Scholar
     

  • 41.

    Mahapatro, D., Panigrahy, R. C. & Panda, S. Coastal lagoon: Present status and future challenges. Int. J. Mar. Sci. 3, 178–186 (2013).


    Google Scholar
     

  • 42.

    Gönenç, I. E. & Wolflin, J. P. Introduction. In Coastal Lagoons: Ecosystem Processes and Modeling for Sustainable Use and Development (eds. Wolflin, J. P. & Gönenç, I. E.) 1–6 (CRC Press, London, 2005).


    Google Scholar
     

  • 43.

    Ericson, J. P., Vörösmarty, C. J., Dingman, S. L., Ward, L. G. & Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Change 50, 63–82 (2006).

    ADS 

    Google Scholar
     

  • 44.

    Syvitski, J. P. M. & Saito, Y. Morphodynamics of deltas under the influence of humans. Glob. Planet. Change 57, 261–282 (2007).

    ADS 

    Google Scholar
     

  • 45.

    Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Kovacs, J. M., Wang, J. & Blanco-Correa, M. Mapping disturbances in a mangrove forest using multi-date landsat TM imagery. Environ. Manage. 27, 763–776 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Cahoon, D. R. et al. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105 (2003).


    Google Scholar
     

  • 49.

    Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Wigand, C. et al. Varying inundation regimes differentially affect natural and sand-amended marsh sediments. PLoS ONE 11, e0164956 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Lewis, R. R. et al. Stress in mangrove forests: Early detection and preemptive rehabilitation are essential for future successful worldwide mangrove forest management. Mar. Pollut. Bull. 109, 764–771 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Lagomasino, D. et al. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 14, 025002 (2018).

    ADS 

    Google Scholar
     

  • 53.

    Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15275 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 54.

    Lacerda, L. D., Borges, R. & Ferreira, A. C. Neotropical mangroves: Conservation and sustainable use in a scenario of global climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1347–1364 (2019).


    Google Scholar
     

  • 55.

    Bhargava, R., Sarkar, D. & Friess, D. A. A cloud computing-based approach to mapping mangrove erosion and progradation: Case studies from the Sundarbans and French Guiana. Estuar. Coast. Shelf Sci. 12, 106798. https://doi.org/10.1016/j.ecss.2020.106798 (2020).

    Article 

    Google Scholar
     

  • 56.

    Hutchison, J., Manica, A., Swetnam, R., Balmford, A. & Spalding, M. Predicting global patterns in mangrove forest biomass. Conserv. Lett. 7, 233–240 (2014).


    Google Scholar
     

  • 57.

    Castañeda-Moya, E. et al. Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14, 1178–1195 (2011).


    Google Scholar
     

  • 58.

    Twilley, R. R., Rivera-Monroy, V. H., Chen, R. & Botero, L. Adapting an ecological mangrove model to simulate trajectories in restoration ecology. Mar. Pollut. Bull. 37, 404–419 (1998).

    CAS 

    Google Scholar
     

  • 59.

    Huh, O. K., Coleman, J. M., Braud, D. & Kiage, L. World Deltas Database. Appendix A. The Major River Deltas Of The World. Report. (2004).

  • 60.

    Coleman, J. M. & Huh, O. K. Major World Deltas: A Perspective From Space (2003).

  • 61.

    Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).


    Google Scholar
     

  • 63.

    R Core Team. R: A Language and Environment for Statistical Computing (2019).

  • 64.

    Dürr, H. H. et al. Worldwide typology of nearshore coastal systems: Defining the estuarine filter of river inputs to the oceans. Estuaries Coasts 34, 441–458 (2011).


    Google Scholar
     

  • 65.

    Simard, M. et al. Global mangrove aboveground biomass, maximum and basal area weighted canopy heights. https://doi.org/10.3334/ORNLDAAC/1665. (2019).

  • 66.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, S. & Team, R. C. nlme: Linear and Nonlinear Mixed Effects Models (2019). https://cran.r-project.org/package=nlme.

  • 67.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).


    Google Scholar
     

  • 68.

    Zuur, A. F., Saveliev, A. A. & Ieno, E. N. A Beginner’s Guide to Generalised Additive Mixed Models with R (Highland Statistics Ltd., Newburgh, 2014).


    Google Scholar
     

  • 69.

    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).


    Google Scholar
     

  • 70.

    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means (2019).

  • 71.

    Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.25 (2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *