A novel image signature-based radiomics method to achieve precise diagnosis and prognostic stratification of gliomas


  • 1.

    Reifenberger G, Wirsching HG, Knobbe-Thomsen CB, Weller M. Advances in the molecular genetics of gliomas—implications for classification and therapy. Nat Rev Clin Oncol. 2017;14:434–52.

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, et al. European Association for Neuro-Oncology (EANO) Task Force on Gliomas. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017;18:315–29.

    Article 

    Google Scholar
     

  • 3.

    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Cavenee WK, Burger PC, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article 

    Google Scholar
     

  • 4.

    Quick-Weller J, Tichy J, Harter PN, Tritt S, Baumgarten P, Bähr O, et al. “Two is not enough”—impact of the number of tissue samples obtained from stereotactic brain biopsies in suspected glioblastoma. J Clin Neurosci. 2018;47:311–4.

    Article 

    Google Scholar
     

  • 5.

    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.

    Article 

    Google Scholar
     

  • 6.

    Shirahata M, Ono T, Stichel D, Schrimpf D, Reuss DE, Sahm F, et al. Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol. 2018;136:153–66.

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Diamandis P, Aldape KD. Insights from molecular profiling of adult glioma. J Clin Oncol. 2017;35:2386–93.

    CAS 
    Article 

    Google Scholar
     

  • 8.

    GLASS Consortium. Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro Oncol. 2018;20:873–84.

    Article 

    Google Scholar
     

  • 9.

    Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, et al. Radiomics: the process and the challenges. Magn Reson Imaging. 2012;30:1234–48.

    Article 

    Google Scholar
     

  • 10.

    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Yu J, Shi Z, Lian Y, Li Z, Liu T, Gao Y, et al. Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur Radiol. 2017;27:3509–22.

    Article 

    Google Scholar
     

  • 12.

    Jiang C, Kong Z, Liu S, Feng S, Zhang Y, Zhu R, et al. Fusion radiomics features from conventional MRI predict MGMT promoter methylation status in lower grade gliomas. Eur J Radiol. 2019;121:108714.

    Article 

    Google Scholar
     

  • 13.

    Ji CH, Yu JH, Wang YY, Chen L, Shi ZF, Mao Y. Brain tumor segmentation in MR slices using improved GrowCut algorithm. In: Seventh International Conference on Graphic and Image Processing (ICGIP 2015) International Society for Optics and Photonics. 2015. https://doi.org/10.1117/12.2228230.

  • 14.

    Perronnin F, Mensink T. Improving the fisher kernel for large-scale image classification. In: Proceedings of the 11th European Conference on Computer Vision. 2010. https://doi.org/10.1007/978-3-642-15561-1_11.

  • 15.

    Zhang X, Xiong H, Zhou W, Lin W, Tian Q, Picking deep filter responses for fine-grained image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. https://doi.org/10.1109/CVPR.2016.128.

  • 16.

    Wu G, Chen Y, Wang Y, Yu J, Lv X, Ju X, et al. Sparse representation-based radiomics for the diagnosis of brain tumors. IEEE Trans Med Imaging. 2016;37:893–905.

    Article 

    Google Scholar
     

  • 17.

    Wu G, Wang Y, Yu J. Overall survival time prediction for high grade gliomas based on sparse representation framework. In: International MICCAI brainlesion workshop. Cham: Springer; 2017. pp. 77–87.

  • 18.

    Zhu X, Suk H, Lee S, Shen D. Subspace regularized sparse multi-task learning for multi-class neurodegenerative disease identification. IEEE Trans Biomed Eng. 2016;63:607–18.

    Article 

    Google Scholar
     

  • 19.

    Aibaidula A, Chan AK, Shi Z, Li Y, Zhang R, Yang R, et al. Adult IDH wild-type lower-grade gliomas should be further stratified. Neuro Oncol. 2017;19:1327–37.

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Diplas BH, He X, Brosnan-Cashman JA, Liu H, Chen LH, Wang Z, et al. The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nat Commun. 2018;9:2087.

    Article 

    Google Scholar
     

  • 21.

    Williams EA, Miller JJ, Tummala SS, Penson T, Iafrate AJ, Juratli TA, et al. TERT promoter wild-type glioblastomas show distinct clinical features and frequent PI3K pathway mutations. Acta Neuropathol Commun. 2018;6:106.

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Kuwahara K, Ohba S, Nakae S, Hattori N, Pareira ES, Yamada S, et al. Clinical, histopathological, and molecular analyses of IDH-wild-type WHO grade II-III gliomas to establish genetic predictors of poor prognosis. Brain Tumor Pathol. 2019;36:135–43.

    Article 

    Google Scholar
     

  • 23.

    Labussière M, Boisselier B, Mokhtari K, Di Stefano AL, Rahimian A, Rossetto M, et al. Combined analysis of TERT, EGFR, and IDH status defines distinct prognostic glioblastoma classes. Neurology. 2014;83:1200–6.

    Article 

    Google Scholar
     

  • 24.

    Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol. 2018;136:805–10.

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Li ZJ, Wang YY, Yu JH, Guo Y, Cao W. Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep. 2017;7:5467.

    Article 

    Google Scholar
     

  • 26.

    Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean C, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014;343:189–93.

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Tesileanu CMS, Dirven L, Wijnenga MMJ, Koekkoek JAF, Vincent AJPE, Dubbink HJ, et al. Survival of diffuse astrocytic glioma, IDH1/2-wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. Neuro Oncol. 2020;22:515–23.

    Article 

    Google Scholar
     

  • 28.

    Tang Q, Lian Y, Yu J, Wang Y, Shi Z, Chen L. Anatomic mapping of molecular subtypes in diffuse glioma. BMC Neurol. 2017;17:183.

    Article 

    Google Scholar
     

  • 29.

    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson M, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Chan AK, Mao Y, Ng HK. TP53 and histone H3.3 mutations in triple-negative lower-grade gliomas. N Engl J Med. 2016;375:2206–8.

    Article 

    Google Scholar
     

  • 31.

    Arita H, Yamasaki K, Matsushita Y, Nakamura T, Shimokawa A, Takami H, et al. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol Commun. 2016;4:79.

    Article 

    Google Scholar
     

  • 32.

    Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 2010;120:707–18.

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *