Agar with embedded channels to study root growth


  • 1.

    Armisen, R. A. Thickening and Gelling Agents for Food (Springer, Berlin, 1997).


    Google Scholar
     

  • 2.

    Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2016: Contributing to food security and nutrition for all (Food and Agriculture Organization of the United Nations, 2016).

  • 3.

    Thakur, V. K., Thakur, M. K. & Voicu, S. I. Polymer Gels: Perspectives and Applications (Springer, Berlin, 2018).


    Google Scholar
     

  • 4.

    Cervino, G. et al. Alginate materials and dental impression technique: a current state of the art and application to dental practice. Mar. Drugs 17, 18 (2019).

    CAS 

    Google Scholar
     

  • 5.

    Paffenbarger, G. C., Rupp, R. W. & Malmstedt, M. Organizations Engaged in Preparing Standards for Dental Materials and Therapeutic Agents with a List of Standards (National Bureau of Standards, 1980).

  • 6.

    American Dental Association. Council adopts American Dental Association Specification No 8 (Dental Zinc Phosphate Cement) and 11 (Agar Impression Material). J. Am. Dent. Assoc. 74, 15651573 (1967).


    Google Scholar
     

  • 7.

    Lam, P.-L. et al. Development of formaldehyde-free agar/gelatin microcapsules containing berberine HCl and gallic acid and their topical and oral applications. Soft Matter 8, 5027–5037 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Yin, Z.-C., Wang, Y.-L. & Wang, K. A pH-responsive composite hydrogel beads based on agar and alginate for oral drug delivery. J. Drug Deliv. Sci. Technol. 43, 12–18 (2018).

    CAS 

    Google Scholar
     

  • 9.

    Leva, A. & Rinaldi, L. Recent Advances in Plant in vitro Culture (Intech Open, London, 2012).


    Google Scholar
     

  • 10.

    Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    CAS 

    Google Scholar
     

  • 11.

    Wang, C. et al. Carboxylated multi-walled carbon nanotubes aggravated biochemicaland subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium. J. Hazard. Mater. 274, 404–412 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Nel, A., Tian, A. X., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Miralles, P., Church, T. L. & Harris, A. T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol. 46, 9234–9239 (2012).

    ADS 

    Google Scholar
     

  • 14.

    Wang, G. H. et al. Influence of phosphate on phytotoxicity of ceria nanoparticles in an agar medium. Environ. Pollut. 224, 392–399 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Zhang, P. et al. Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. Environ. Sci. Nano 1, 459–465 (2014).


    Google Scholar
     

  • 16.

    Yun, B. et al. Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc. Natl. Acad. Sci. U.S.A. 111, 9319–9324 (2014).

    ADS 

    Google Scholar
     

  • 17.

    Yokawa, K., Kagenishi, T., Kawano, T., Mancuso, S. & Baluška, F. Illumination of Arabidopsis roots induces immediate burst of ROS production. Plant Signaling Behavi. 6, 1460–1464 (2011).

    CAS 

    Google Scholar
     

  • 18.

    Xu, W. et al. An improved agar-plate method for studying root growth and response of Arabidopsis thaliana. Sci. Rep. 3, 1273 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Jocic, S., Mestres, G. & Tenje, M. Fabrication of user-friendly and biomimetic 1,1′-carbonyldiimidazolecrosslinked gelatin/agar microfluidic devices. Mater. Sci. Eng. C 76, 1175–1180 (2017).

    CAS 

    Google Scholar
     

  • 20.

    Zhang, X., Li, L. & Luo, C. Gel integration for microfluidic applications. Lab. Chip. 16, 1757–1776 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Lynch, J. P. & Beebe, S. E. Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. HortScience 30, 1165–1171 (1995).

    CAS 

    Google Scholar
     

  • 22.

    Calba, H., Jaillard, B., Fallavier, P. & Arvieu, J.-C. Agarose as a suitable substrate for use in the study of Al dynamics in the rhizosphere. Plant Soil 178, 67–74 (1996).

    CAS 

    Google Scholar
     

  • 23.

    Lopez-Bucio, J., Cruz-Ramirez, A. & Herrera-Estrella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280–287 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Miguel, M. A., Postma, J. A. & Lynch, J. P. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition. Plant Physiol. 167, 1430–1439 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25

    Mishra, S., Thombare, N., Ali, M. & Swami, S. Applications of Biopolymeric Gels in Agricultural Sector in Polymer Gels: Perspectives and Applications 185–228 (Springer, Berlin, 2018).


    Google Scholar
     

  • 26.

    Mao, B., Divoux, T. & Snabre, P. Impact of saccharides on the drying kinetics of agarose gels measured by in-situ interferometry. Sci. Rep. 7, 41185 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Schwarz, M., Cohen, D. & Or, D. Root-soil mechanical interactions during pullout and failure of root bundles. J. Geophys. Res. Earth Surf. 115, F4 (2010).


    Google Scholar
     

  • 28.

    Liang, T. et al. A critical evaluation of predictive models for rooted soil strength with application to predicting the seismic deformation of rooted slopes. Landslides 17, 93–109 (2019).


    Google Scholar
     

  • 29.

    Osman, N. & Abdullah, M. N. Pull-Out and tensile strength properties of two selected tropical trees. Sains Malays. 40, 577–585 (2011).


    Google Scholar
     

  • 30.

    Yan, J., Wang, B., Zhou, Y. & Hao, S. Resistance from agar medium impacts the helical growth of Arabidopsis primary roots. J. Mech. Behav. Biomed. Mater. 85, 43–50 (2018).

    PubMed 

    Google Scholar
     

  • 31.

    Freile-Pelegrin, Y. et al. Degradation of agar films in a humid tropical climate: thermal, mechanical, morphological and structural changes. Polym. Degrad. Stab. 92, 244–252 (2007).

    CAS 

    Google Scholar
     

  • 32.

    Ogden, R. W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 326, 565–584 (1972).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 33.

    Bai, Y., Liu, C., Huang, G., Li, W. & Feng, S. A hyper-viscoelastic constitutive model for polyurea under uniaxial compressive loading. Polymers 8, 133 (2016).

    PubMed Central 

    Google Scholar
     

  • 34.

    Czerner, M., Martucci, J., Fasce, L. A., Ruseckaite, R. & Frontini, P. M. Mechanical and Fracture Behavior of Gelatin Gels. Proc 13th International Conference on Fracture, Beijing, China (2013).

  • 35.

    Mao, B., Bentaleb, A., Louerat, F., Divoux, T. & Snabre, P. Heat-induced aging of agar solutions: Impact on the structural and mechanical properties of agar gels. Food Hydrocolloids 64, 59–69 (2017).

    CAS 

    Google Scholar
     

  • 36.

    Normand, V., Lootens, D. L., Amici, E., Plucknett, K. P. & Aymard, P. New insight into agarose gel mechanical properties. Biomacromol 1, 730–738 (2000).

    CAS 

    Google Scholar
     

  • 37.

    Nobbe, F. Uber die feinere Verästelung der Pflanzenwurzeln. Landwirtschaft. VersStat. 4, 212–224 (1862).


    Google Scholar
     

  • 38.

    Morgan, J. B. & Connolly, E. L. Plant-soil interactions: nutrient uptake. Nat. Educ. Knowl. 4, 2 (2013).


    Google Scholar
     

  • 39.

    Drew, M. C. & Saker, L. R. Nutrient supply and the growth of the seminal root system in barley. III. Compensatory increase in growth of lateral roots, and in rates of phosphate uptake, in response to a localized supply of phosphate. J. Exp. Biol. 29, 435–451 (1978).

    CAS 

    Google Scholar
     

  • 40.

    Bornman, J. J. & Barnard, R. O. The possible use of agar gel in plant nutritional studies. S. Afr. J. Plant Soil. 10, 146–149 (1993).

    CAS 

    Google Scholar
     

  • 41.

    Wiersum, L. K. Density of root branching as affected by substrate and separate ions. Acta Bot. Neerl. 7, 174–190 (1958).

    CAS 

    Google Scholar
     

  • 42.

    Forde, B. & Lorenzo, V. The nutritional control of root development. Plant Soil 232, 51–68 (2001).

    CAS 

    Google Scholar
     

  • 43.

    Robinson, D. The responses of plants to non-uniform supplies of nutrients. New Phytol. 127, 635–674 (1994).

    CAS 

    Google Scholar
     

  • 44.

    Hodge, A., Robinson, D., Griffiths, B. S. & Fitter, A. H. Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ. 22, 811–820 (1992).


    Google Scholar
     

  • 45.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Instron Corporation. Series 5500 Load Frames Including Series 5540, 5560, 5580: Reference Manual Equipment, M10-14190-EN Revision A. Instron Corporation, Norwood, Massachusetts, United States (2005).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *