Amine-based capture of CO2 for utilization and storage


  • 1.

    Kiehl JT, Trenberth KE. Earth’s annual global mean energy budget. Bull Am Meteorol Soc. 1997;78:197–208.


    Google Scholar
     

  • 2.

    Karl TR, Trenberth KE. Modern global climate change. Science. 2003;302:1719–23.

    CAS 

    Google Scholar
     

  • 3.

    McCarty JP. Ecological consequences of recent climate change. Biol Conserv. 2001;15:320–31.


    Google Scholar
     

  • 4.

    Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke Jr. RA, et al. Abrupt climate change. Science. 2003;299:2005–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Arrhenius S. On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag J Sci. 1896;41:237–76.

    CAS 

    Google Scholar
     

  • 6.

    Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, et al. editors. Global warming of 1.5 °C. IPCC. 2018. https://www.ipcc.ch/sr15/download/#full.

  • 7.

    Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, et al. Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature. 2016;534:631–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    International Energy Agency. Energy technology perspectives 2017. Paris: OECD/IEA; 2017.

  • 9.

    Yu KM, Curcic I, Gabriel J, Tsang SC. Recent advances in CO2 capture and utilization. ChemSusChem. 2008;1:893–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ Sci. 2012;5:7281–305.

    CAS 

    Google Scholar
     

  • 11.

    Naims H. Economics of carbon dioxide capture and utilization – a supply and demand perspective. Environ Sci Pollut Res. 2016;23:22226–41.

    CAS 

    Google Scholar
     

  • 12.

    Ho H-J, Iizuka A, Shibata E. Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies. Ind Eng Chem Res. 2019;58:8941–54.

    CAS 

    Google Scholar
     

  • 13.

    Aresta M, Dibenedetto A, Angelini A. The changing paradigm in CO2 utilization. J CO2 Util. 2013;3–4:65–73.


    Google Scholar
     

  • 14.

    Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S. The technological and economic prospects for CO2 utilization and removal. Nature. 2019;575:87–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Marchetti C. On geoengineering and the CO2 problem. Clim Change. 1977;1:59–68.

    CAS 

    Google Scholar
     

  • 16.

    Metz B, Davidson OR, De Coninck H, Loos M, Meyer LA, editors. IPCC special report: carbon dioxide capture and storage. Cambridge: Cambridge Univ. Press; 2005.

  • 17.

    Kheshgi H, de Coninck H, Kessels J. Carbon dioxide capture and storage: seven years after the IPCC special report. Mitig Adapt Strateg Glob Change. 2012;17:563–7.


    Google Scholar
     

  • 18.

    Scott V, Gilfillan S, Markusson N, Chalmers H, Haszeldine RS. Last chance for carbon capture and storage. Nat Clim Change. 2013;3:105–11.

    CAS 

    Google Scholar
     

  • 19.

    Seigo SL, Dohle S, Siegrist M. Public perception of carbon capture and storage (CCS): a review. Renew Sust Energ Rev. 2014;38:848–63.


    Google Scholar
     

  • 20.

    de Coninck H, Benson SM. Carbon dioxide capture and storage: issues and prospects. Annu Rev Environ Resour. 2014;39:243–70.


    Google Scholar
     

  • 21.

    Tan Y, Nookuea W, Li H, Thorin E, Yan J. Property impacts on carbon capture and storage (CCS) processes: a review. Energy Convers Manag. 2016;118:204–22.

    CAS 

    Google Scholar
     

  • 22.

    Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. Carbon capture and storage (CCS): the way forward. Energy Environ Sci. 2018;11:1062–176.

    CAS 

    Google Scholar
     

  • 23.

    Whitmarsh L, Xenias D, Jones CR. Framing effects on public support for carbon capture and storage. Palgrave Commun. 2019;5:17.


    Google Scholar
     

  • 24.

    Sgouridis S, Carbajales-Dale M, Csala D, Chiesa M, Bardi U. Comparative net energy analysis of renewable electricity and carbon capture and storage. Nat Energy. 2019;4:456–65.

    CAS 

    Google Scholar
     

  • 25.

    Rubin ES, Davison JE, Herzog HJ. The cost of CO2 capture and storage. Int J Greenh Gas Control. 2015;40:378–400.

    CAS 

    Google Scholar
     

  • 26.

    Global status report 2019. Global CCS Institute. 2019. https://www.globalccsinstitute.com/resources/global-status-report.

  • 27.

    GCCSI. CO2RE. https://co2re.co/.

  • 28.

    Dooley JJ, Davidson CL, Dahowski RT. An assessment of the commercial availability of carbon dioxide capture and storage technologies as of June 2009. PNNL 18520. Richland, WA: Pacific Northwest National Laboratory; 2009.

  • 29.

    Liu H, Tellez BG, Atallah T, Barghouty M. The role of CO2 capture and storage in Saudi Arabia’s energy future. Int J Greenh Gas Control. 2012;11:163–71.


    Google Scholar
     

  • 30.

    Iglesias RS, Ketzer JM, Melo CL, Heemann R, Machado CX. Carbon capture and geological storage in Brazil: an overview. Greenh Gas Sci Technol. 2015;5:119–30.


    Google Scholar
     

  • 31.

    Ren B, Ren S, Zhang L, Chen G, Zhang H. Monitoring on CO2 migration in a tight oil reservoir during CCS-EOR in Jilin Oilfield China. Energy. 2016;98:108–21.

    CAS 

    Google Scholar
     

  • 32.

    20 Years of carbon capture and storage. International Energy Agency. 2016. https://webstore.iea.org/20-years-of-carbon-capture-and-storage.

  • 33.

    Roberts JJ, Gilfillan SMV, Stalker L, Naylor M. Geochemical tracers for monitoring offshore CO2 stores. Int J Greenh Gas Control. 2017;65:218–34.

    CAS 

    Google Scholar
     

  • 34.

    Rock L, O’Brien S, Tessarolo S, Duer J, Bacci VO, Hirst B, et al. The Quest CCS project: 1st year review post start of injection. Energy Procedia. 2017;114:5320–8.

    CAS 

    Google Scholar
     

  • 35.

    Mantripragada HC, Zhai H, Rubin ES. Boundary Dam or Petra Nova – which is a better model for CCS energy supply? Int J Greenh Gas Control. 2019;82:59–68.


    Google Scholar
     

  • 36.

    Arts R, Eiken O, Chadwick RA, Zweigel P, van der Meer L, Zinszner B. Monitoring of CO2 injected at Sleipner using time-lapse seismic data. Energy. 2004;29:1383–93.

    CAS 

    Google Scholar
     

  • 37.

    Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE. Improved attribution of climate forcing to emissions. Science. 2009;326:716–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Rao AB, Rubin ES. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol. 2002;36:4467–75.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des. 2011;89:1609–24.

    CAS 

    Google Scholar
     

  • 40.

    Feron PHM, Cousins A, Jiang K, Zhai R, Garcia M. An update of the benchmark post-combustion CO2-capture technology. Fuel. 2020;273:117776.

    CAS 

    Google Scholar
     

  • 41.

    Kolster C, Masnadi MS, Krevor S, Mac Dowell N, Brandt AR. CO2 enhanced oil recovery: a catalyst for gigatonne-scale carbon capture and storage deployment? Energy Environ Sci. 2017;10:2594–608.

    CAS 

    Google Scholar
     

  • 42.

    Mac Dowell N, Fennell PS, Shah N, Maitland GC. The role of CO2 capture and utilization in mitigating climate change. Nature. Clim Change. 2017;7:243–9.


    Google Scholar
     

  • 43.

    Mimura T, Shimojo S, Suda T, Iijima M, Mitsuoka. Research and development on energy saving technology for flue gas carbon dioxide recovery and steam system in power plant. Energy Convers Manag. 1995;36:397–400.

    CAS 

    Google Scholar
     

  • 44.

    Gottlicher G, Pruschek R. Comparison of CO2 removal systems for fossil-fuelled power plant processes. Energy Convers Manag. 1997;38:S173–8.


    Google Scholar
     

  • 45.

    Mumford KA, Wu Y, Smith KH, Stevens GW. Review of solvent based carbon-dioxide capture technologies. Front Chem Sci Eng. 2015;9:125–41.

    CAS 

    Google Scholar
     

  • 46.

    Luis P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: consequences and alternatives. Desalination. 2016;380:93–9.

    CAS 

    Google Scholar
     

  • 47.

    Hochgesand G. Rectisol and purisol. Ind Eng Chem. 1970;62:37–43.

    CAS 

    Google Scholar
     

  • 48.

    Nakao S, Yogo K, Goto K, Kai T, Yamada H. Advanced CO2 capture technologies. Springer Briefs in Energy book series. 2019.

  • 49.

    Rochelle GT. Amine scrubbing for CO2 capture. Science. 2009;325:1652–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Ünveren EE, Monkul BÖ, Sarıoğlan Ş, Karademir N, Alperb E. Solid amine sorbents for CO2 capture by chemical adsorption: a review. Petroleum. 2017;3:37–50.


    Google Scholar
     

  • 51.

    Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y. Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nanogel particles. J Am Chem Soc. 2012;134:18177–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Tong Z, Ho WSW. Facilitated transport membranes for CO2 separation and capture. Sep Sci Technol. 2017;52:156–67.

    CAS 

    Google Scholar
     

  • 53.

    Yamada H. Comparison of solvation effects on CO2 capture with aqueous amine solutions and amine-functionalized ionic liquids. J Phys Chem B. 2016;120:10563–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Hall Jr HK. Correlation of the base strength of amines. J Am Chem Soc. 1957;79:5441–4.

    CAS 

    Google Scholar
     

  • 55.

    Vaidya PD, Kenig EY. CO2–alkanolamine reaction kinetics: a review of recent studies. Chem Eng Technol. 2007;30:1467–74.

    CAS 

    Google Scholar
     

  • 56.

    Yamada H, Shimizu S, Okabe H, Matsuzaki Y, Chowdhury FA, Fujioka Y. Prediction of the basicity of aqueous amine solutions and the species distribution in the amine−H2O−CO2 system using the COSMO-RS method. Ind End Chem Res. 2010;49:2449–55.

    CAS 

    Google Scholar
     

  • 57.

    Arstad B, Blom R, Swang O. CO2 absorption in aqueous solutions of alkanolamines: mechanistic insight from quantum chemical calculations. J Phys Chem A. 2007;111:1222–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Inagaki F, Matsumoto C, Iwata T, Mukai C. CO2-selective absorbents in air: reverse lipid bilayer structure forming neutral carbamic acid in water without hydration. J Am Chem Soc. 2017;139:4639–42.

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Yamada H, Matsuzaki Y, Goto K. Quantitative spectroscopic study of equilibrium in CO2-loaded aqueous 2-(ethylamino)ethanol solutions. Ind Eng Chem Res. 2014;53:1617–23.

    CAS 

    Google Scholar
     

  • 60.

    da Silva EF, Svendsen HF. Computational chemistry study of reactions, equilibrium and kinetics of chemical CO2 absorption. Int J Greenh Gas Control. 2007;1:151–7.

  • 61.

    Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, et al. Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ Sci Technol. 2009;43:6427–33.

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Chowdhury FA, Yamada H, Higashii T, Goto K, Onoda M. CO2 capture by tertiary amine absorbents: a performance comparison study. Ind Eng Chem Res. 2013;52:8323–31.

    CAS 

    Google Scholar
     

  • 63.

    Zhao Y, Ho WSW. CO2-selective membranes containing sterically hindered amines for CO2/H2 separation. Ind Eng Chem Res. 2013;52:8774–82.

    CAS 

    Google Scholar
     

  • 64.

    Yamada H, Chowdhury FA, Fujiki J, Yogo K. Enhancement mechanism of the CO2 adsorption-desorption efficiency of silica-supported tetraethylenepentamine by chemical modification of amino groups. ACS Sustain Chem Eng. 2019;7:9574–81.

    CAS 

    Google Scholar
     

  • 65.

    Yamada H, Matsuzaki Y, Chowdhury FA, Higashii T. Computational investigation of carbon dioxide absorption in alkanolamine solutions. J Mol Model. 2013;19:4147–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Goto K, Okabe H, Chowdhury FA, Shimizu S, Fujioka Y, Onoda M. Development of novel absorbents for CO2 capture from blast furnace gas. Int J Greenh Gas Control. 2011;5:1214–9.

    CAS 

    Google Scholar
     

  • 67.

    Yamada H, Chowdhury FA, Goto K, Higashii T. CO2 solubility and species distribution in aqueous solutions of 2-(isopropylamino)ethanol and its structural isomers. Int J Greenh Gas Control. 2013;17:99–105.

    CAS 

    Google Scholar
     

  • 68.

    Yamada H, Fujiki J, Chowdhury FA, Yogo K. Effect of isopropyl-substituent introduction into tetraethylenepentamine-based solid sorbents for CO2 capture. Fuel. 2018;214:14–9.

    CAS 

    Google Scholar
     

  • 69.

    Zhao Y, Ho WSW. Steric hindrance effect on amine demonstrated in solid polymer membranes for CO2 transport. J Membr Sci. 2012;415–416:132–8.


    Google Scholar
     

  • 70.

    Danckwerts PV. The reaction of CO2 with ethanolamines. Chem Eng Sci. 1979;34:443–6.

    CAS 

    Google Scholar
     

  • 71.

    Orestes E, Ronconi CM, Carneiro JWM. Insights into the interactions of CO2 with amines: a DFT benchmark study. Phys Chem Chem Phys. 2014;16:17213–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Xie H-B, Zhou Y, Zhang Y, Johnson JK. Reaction mechanism of monoethano-lamine with CO2 in aqueous solution from molecular modeling. J Phys Chem A. 2010;14:11844–52.


    Google Scholar
     

  • 73.

    Yamada H, Matsuzaki Y, Higashii T, Kazama S. Density functional theory study on carbon dioxide absorption into aqueous solu-tions of 2-amino-2-methyl-1-propanol using a continuum solvation model. J Phys Chem A. 2011;115:3079−86.

  • 74.

    Perinu C, Arstad B, Jens K-J. NMR spectroscopy applied to amine–CO2–H2O systems relevant for post-combustion CO2 capture: a review. Int J Greenh Gas Control. 2014;20:230–43.

    CAS 

    Google Scholar
     

  • 75.

    Matsuzaki Y, Yamada H, Chowdhury FA, Yamamoto S, Goto K. Ab initio study of CO2 capture mechanisms in aqueous 2-amino-2-methyl-1-propanol: electronic and steric effects of methyl substituents on the stability of carbamate. Ind Eng Chem Res. 2019;58:3549–54.

    CAS 

    Google Scholar
     

  • 76.

    Knox K. Le Châtelier’s principle. J Chem Educ. 1985;62:863.


    Google Scholar
     

  • 77.

    Wang T, Xie H-B, Song Z, Niu J, Chen D-L, Xia D, et al. Role of hydrogen bond capacity of solvents in reactions of amines with CO2: a computational study. J Environ Sci. 2020;91:271–8.


    Google Scholar
     

  • 78.

    Hussain A, Hägg M-B. A feasibility study of CO2 capture from flue gas by a facilitated transport membrane. J Membr Sci. 2010;359:140–8.

    CAS 

    Google Scholar
     

  • 79.

    Taniguchi I, Duan S, Kazama S, Fujioka Y. Facile fabrication of a novel high performance CO2 separation membrane: immobilization of poly(amidoamine) dendrimers in poly(ethylene glycol) networks. J Membr Sci. 2008;322:277–80.

    CAS 

    Google Scholar
     

  • 80.

    Adewole JK, Ahmad AL, Ismail S, Leo CP. Current challenges in membrane separation of CO2 from natural gas: a review. Int J Greenh Gas Control. 2013;17:46–65.

    CAS 

    Google Scholar
     

  • 81.

    Hasebe S, Aoyama S, Tanaka M, Kawakami H. CO2 separation of polymer membranes containing silica nanoparticles with gas permeable nano-space. J Membr Sci. 2017;536:148–55.

    CAS 

    Google Scholar
     

  • 82.

    He Z, Lindbråthen A, Kim T-J, Hägg M-B. Pilot testing on fixed-site-carrier membranes for CO2 capture from flue gas. Int J Greenh Gas Control. 2017;64:323–32.

    CAS 

    Google Scholar
     

  • 83.

    He X. A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries. Energ Sustain Soc. 2018;8:34.


    Google Scholar
     

  • 84.

    Scholes CA. Pilot plants of membrane technology in industry: challenges and key learnings. Front Chem Sci Eng. 2020;14:305–16.


    Google Scholar
     

  • 85.

    Robeson LM. Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci. 1991;62:165–85.

    CAS 

    Google Scholar
     

  • 86.

    Robeson LM. The upper bound revisited. J Membr Sci. 2008;320:390–400.

    CAS 

    Google Scholar
     

  • 87.

    Freeman BD. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules. 1999;32:375–80.

    CAS 

    Google Scholar
     

  • 88.

    Yamaguchi T, Boetje LM, Koval CA, Noble RD, Bowman CN. Transport properties of carbon dioxide through amine functionalized carrier membranes. Ind Eng Chem Res. 1995;34:4071–7.

    CAS 

    Google Scholar
     

  • 89.

    Rafiq S, Deng L, Hägg M-B. Role of facilitated transport membranes and composite membranes for efficient CO2 capture – a review. ChemBioEng Rev. 2016;3:68–85.

    CAS 

    Google Scholar
     

  • 90.

    Kim T-J, Li B, Hägg M-B. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. J Polym Sci B Polym Phys. 2004;42:4326–36.

    CAS 

    Google Scholar
     

  • 91.

    Sandru M, Kim T-J, Hägg M-B. High molecular fixed-site-carrier PVAm membrane for CO2 capture. Desalination. 2009;240:298–300.

    CAS 

    Google Scholar
     

  • 92.

    Deng L, Kim T-J, Hägg M-B. Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J Membr Sci. 2009;340:154–63.

    CAS 

    Google Scholar
     

  • 93.

    Kim T-J, Vrålstad H, Sandru M, Hägg M-B. Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J Membr Sci. 2013;428:218–24.

    CAS 

    Google Scholar
     

  • 94.

    Nieto DR, Lindbråthen A, Hägg M-B. Effect of water interactions on polyvinylamine at different pHs for Membrane gas separation. ACS Omega. 2017;2:8388–400.


    Google Scholar
     

  • 95.

    Francisco GJ, Chakma A, Feng X. Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation. J Membr Sci. 2007;303:54–63.

    CAS 

    Google Scholar
     

  • 96.

    Francisco GJ, Chakma A, Feng X. Separation of carbon dioxide from nitrogen using diethanolamineimpregnated poly(vinyl alcohol) membranes. Sep Purif Technol. 2010;71:205–13.

    CAS 

    Google Scholar
     

  • 97.

    Taniguchi I, Kinugasa K, Toyoda M, Minezaki K. Effect of amine structure on CO2 capture by polymeric membranes. Sci Technol Adv Mater. 2017;18:950–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Yuan S, Wang Z, Qiao Z, Wang M, Wang J, Wang S. Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine. J Membr Sci. 2011;378:425–37.

    CAS 

    Google Scholar
     

  • 99.

    Qiao Z, Wang Z, Zhang C, Yuan S, Zhu Y, Wang J, et al. PVAm–PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE J. 2013;59:215–28.

    CAS 

    Google Scholar
     

  • 100.

    Khalili F, Henni A. East ALL. pKa values of some piperazines at (298, 303, 313, and 323) K. J. Chem Eng Data. 2009;54:2914–7.

    CAS 

    Google Scholar
     

  • 101.

    Bishnoi S, Rochelle GT. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci. 2000;55:5531–43.

    CAS 

    Google Scholar
     

  • 102.

    Hägg MB, Lindbråthen A, He X, Nodeland SG, Cantero T. Pilot demonstration-reporting on CO2 capture from a cement plant using hollow fiber process. Energy Procedia. 2017;114:6150–65.


    Google Scholar
     

  • 103.

    Salim W, Vakharia V, Chen Y, Wu D, Han Y, Ho WSW. Fabrication and field testing of spiral-wound membrane modules for CO2capture from flue gas. J Membr Sci. 2018;556:126–37.

    CAS 

    Google Scholar
     

  • 104.

    Reynolds AJ, Verheyen TV, Adeloju SV, Meuleman E, Feron P. Towards commercial scale postcombustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts. Environ Sci Technol. 2012;46:3643–54.

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Rosa L, Reimer JA, Went MS, D’Odorico P. Hydrological limits to carbon capture and storage. Nat Sustain. 2020;3:658–66.


    Google Scholar
     

  • 106.

    von der Assen N, Jung J, Bardow A. Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ Sci. 2013;6:2721–34.


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *