An approach for the measurement of the bulk temperature of single crystal diamond using an X-ray free electron laser


  • 1.

    Chen, Y.-K. & Milos, F. S. Ablation and thermal response program for spacecraft heatshield analysis. J. Spacecr. Rockets 36, 475–483. https://doi.org/10.2514/2.3469 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Guillot, T. Interiors of giant planets inside and outside the solar system. Science 286, 72–77. https://doi.org/10.1126/science.286.5437.72 (1999).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Drake, R. P. Introduction to high-energy-density physics. In High-Energy-Density Physics 1–17 (Springer, Berlin, 2006).

  • 4.

    Brown, S. B. et al. Shock drive capabilities of a 30-joule laser at the matter in extreme conditions hutch of the linac coherent light source. Rev. Sci. Instrum. 88, 105113. https://doi.org/10.1063/1.4997756 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 5.

    McBride, E. E. et al. Setup for meV-resolution inelastic X-ray scattering measurements at the Matter in Extreme Conditions Endstation at the LCLS. 94550, 1–5. https://doi.org/10.1063/1.5039329 (2018). arXiv:1806.02398.

  • 6.

    Kraus, D. et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1, 606–611. https://doi.org/10.1038/s41550-017-0219-9 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Dorchies, F. et al. Time evolution of electron structure in femtosecond heated warm dense molybdenum. Phys. Rev. B 92, 144201. https://doi.org/10.1103/PhysRevB.92.144201 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Sperling, P. et al. Free-electron X-ray laser measurements of collisional-damped plasmons in isochorically heated warm dense matter. Phys. Rev. Lett. 115, 115001. https://doi.org/10.1103/PhysRevLett.115.115001 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Glenzer, S. H. et al. Matter under extreme conditions experiments at the linac coherent light source. J. Phys. B At. Mol. Opt. Phys. 49, 092001. https://doi.org/10.1088/0953-4075/49/9/092001 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Mason, P. et al. Development of a 100 J 10 Hz laser for compression experiments at the high energy density instrument at the european xfel. High Power Laser Sci. Eng. 6, e65. https://doi.org/10.1017/hpl.2018.56 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Milathianaki, D. et al. Femtosecond visualization of lattice dynamics in shock-compressed matter. Science 342, 220–223. https://doi.org/10.1126/science.1239566 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    McBride, E. E. et al. Phase transition lowering in dynamically compressed silicon. Nat. Phys. 15, 89–94. https://doi.org/10.2514/2.34691 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Kraus, D. et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970. https://doi.org/10.1038/ncomms10970 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Wehrenberg, C. E. et al. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics. Nature 550, 496–499. https://doi.org/10.1038/nature24061 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Gleason, A. E. et al. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun. 6, 8191. https://doi.org/10.1038/ncomms9191 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Gleason, A. E. et al. Compression freezing kinetics of water to ice vii. Phys. Rev. Lett. 119, 025701. https://doi.org/10.2514/2.34695 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Briggs, R. et al. Ultrafast X-ray diffraction studies of the phase transitions and equation of state of scandium shock compressed to 82 GPa. Phys. Rev. Lett. 118, 025501. https://doi.org/10.1103/PhysRevLett.118.025501 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Coleman, A. L. et al. Identification of phase transitions and metastability in dynamically compressed antimony using ultrafast X-ray diffraction. Phys. Rev. Lett. 122, 255704. https://doi.org/10.1103/PhysRevLett.122.255704 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Spaulding, D. K. et al. Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions. Phys. Rev. Lett. 108, 065701. https://doi.org/10.2514/2.34698 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Millot, M. et al. Experimental evidence for superionic water ice using shock compression. Nat. Phys. 14, 297–302. https://doi.org/10.2514/2.34699 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Ping, Y. et al. Solid iron compressed up to 560 GPa. Phys. Rev. Lett. 111, 065501. https://doi.org/10.1103/PhysRevLett.111.065501 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Mo, M. Z. et al. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science 360, 1451–1455. https://doi.org/10.1126/science.286.5437.721 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Kritcher, A. et al. Probing matter at Gbar pressures at the NIF. High Energy Density Phys. 10, 27–34. https://doi.org/10.1016/j.hedp.2013.11.002 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Saunders, A. M. et al. X-ray Thomson scattering measurements from hohlraum-driven spheres on the omega laser. Rev. Sci. Instrum. 87, 11E724. https://doi.org/10.1063/1.4962044 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Fletcher, L. B., Kritcher, A. L., Pak, A., Ma, T., Döppner, T., Fortmann, C., Divol, L., Jones, O. S., Landen, O. L., Scott, H. A., Vorberger, J., Chapman, D. A., Gericke, D. O., Mattern, B. A., Seidler, G. T., Gregori, G., Falcone, R. W. & Glenzer, S. H.. Observations of Continuum Depression in Warm Dense Matter with X-Ray Thomson Scattering. Phys. Rev. Lett. 112(14), 145004 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Kritcher, A. L., Swift, D. C., Döppner, T., Bachmann, B., Benedict, L. X., Collins, G. W., DuBois, J. L., Elsner, F., Fontaine, G., Gaffney, J. A., Hamel, S., Lazicki, A., Johnson, W. R., Kostinski, N., Kraus, D., MacDonald, M. J., Maddox, B., Martin, M. E., Neumayer, P., Nikroo, A., Nilsen, J., Remington, B. A., Saumon, D., Sterne, P. A., Sweet, W., Correa, A. A., Whitley, R. D., Falcone, R. W. & Glenzer, S. H. A measurement of the equation of state of carbon envelopes of white dwarfs. Nature 584(7819), 51–54 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Glenzer, S. H. & Redmer, R. X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 81, 1625–1663. https://doi.org/10.1126/science.286.5437.724 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Fletcher, L. B. et al. Ultrabright X-ray laser scattering for dynamic warm dense matter physics. Nat. Photonics 9, 274–279. https://doi.org/10.1126/science.286.5437.725 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Burkel, E. Phonon spectroscopy by inelastic X-ray scattering. Rep. Prog. Phys. 63, 171. https://doi.org/10.1088/0034-4885/63/2/203 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Baron, A. Q. R. High-Resolution Inelastic X-Ray Scattering I: Context, Spectrometers, Samples, and Superconductors 2131–2212 (Springer, Cham, 2020).


    Google Scholar
     

  • 31.

    Baron, A. Q. R. High-Resolution Inelastic X-Ray Scattering Part II: Scattering Theory, Harmonic Phonons, and Calculations 2213–2250 (Springer, Cham, 2020).


    Google Scholar
     

  • 32.

    Krisch, M. & Sette, F. Inelastic X-ray scattering with very high resolution at the ESRF. Crystallogr. Rep. 62, 1–12. https://doi.org/10.1134/S1063774517010096 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Scopigno, T., Balucani, U., Ruocco, G. & Sette, F. Density fluctuations in molten lithium: inelastic X-ray scattering study. J. Phys. Condens. Matter. 12, 8009–8034. https://doi.org/10.1088/0953-8984/12/37/302 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Pontecorvo, E. et al. High-frequency longitudinal and transverse dynamics in water. Phys. In Rev. E Stat. Nonlinear Soft Matter Phys. 1–28 (2005). https://doi.org/10.1103/PhysRevE.71.011501.


    Google Scholar
     

  • 35.

    Monaco, G., Cunsolo, A., Ruocco, G. & Sette, F. Viscoelastic behavior of water in the terahertz-frequency range: an inelastic x-ray scattering study. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 60, 5505–5521. https://doi.org/10.1103/PhysRevE.60.5505 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Gregori, G. & Gericke, D. O. Low frequency structural dynamics of warm dense matter. Phys. Plasmas 16, 056306. https://doi.org/10.1063/1.49977560 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Mabey, P. et al. A strong diffusive ion mode in dense ionized matter predicted by langevin dynamics. Nat. Commun. 8, 14125. https://doi.org/10.1038/ncomms14125 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Klein, M. J. Principle of detailed balance. Phys. Rev. 97, 1446–1447. https://doi.org/10.1063/1.49977562 (1955).

    ADS 
    MathSciNet 
    CAS 
    Article 
    MATH 

    Google Scholar
     

  • 39.

    Tschentscher, T. et al. Photon beam transport and scientific instruments at the European XFEL. Appl. Sci. 7, 592. https://doi.org/10.3390/app7060592 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Abeghyan, S. et al. First operation of the SASE1 undulator system of the European X-ray free-electron laser. J. Synchrotron Radiat. 26, 302–310. https://doi.org/10.1107/S1600577518017125 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Sinn, H. et al. The SASE1 X-ray beam transport system. J. Synchrotron Radiat. 26, 692–699. https://doi.org/10.1107/S1600577519003461 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Grünert, J. et al. X-ray photon diagnostics at the European XFEL. J. Synchrotron Radiat. 26, 1422–1431. https://doi.org/10.1107/S1600577519006611 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Zhao, J. et al. Nuclear resonant scattering at high pressure and high temperature. High Press. Res. 24, 447–457. https://doi.org/10.1080/08957950412331331727 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 44.

    Wollenweber, L. et al. High-resolution inelastic X-ray scattering at the high energy density scientific instrument at European XFEL (in preparation).

  • 45.

    Decking, W. et al. A mhz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photonicshttps://doi.org/10.1038/s41566-020-0607-z (2020).

    Article 

    Google Scholar
     

  • 46.

    Huotari, S. et al. Improving the performance of high-resolution X-ray spectrometers with position-sensitive pixel detectors. J. Synchrotron Radiat. 12, 467–472. https://doi.org/10.1107/S0909049505010630 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Shvyd’ko, Y. Dynamical Theory of X-Ray Diffraction in X-Ray Optics (ed. Rhodes, W. T.) 37–142. https://doi.org/10.1007/978-3-540-40890-1 (Springer-Verlag Berlin Heidelberg, 2004).

  • 48.

    Carini, G. A. et al. epix100 camera: use and applications at lcls. AIP Conf. Proc. 1741, 040008. https://doi.org/10.1063/1.4952880 (2016).

    Article 

    Google Scholar
     

  • 49.

    Sala, M. M., Martel, K., Henriquet, C., Zein, A. A. & Simonelli, L. Beamlines a high-energy-resolution resonant inelastic X-ray scattering spectrometer at ID20 of the European Synchrotron Radiation Facility. J. Synchrotron Radiat. 25, 580–591. https://doi.org/10.1107/S1600577518001200 (2018).

    Article 

    Google Scholar
     

  • 50.

    Squires, G. L. Correlation Functions in Nuclear Scattering 3rd edn, 61–85 (Cambridge University Press, Cambridge, 2012).


    Google Scholar
     

  • 51.

    Marshall, W. & Lovesey, S. W. Scattering by Phonons 64–93 (Oxford University Press, Oxford, 1971).


    Google Scholar
     

  • 52.

    Warren, J. L., Yarnell, J. L., Dolling, G. & Cowley, R. A. Lattice dynamics of diamond. Phys. Rev. 158, 805–808. arXiv:1806.023981 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 53.

    Burkel, E. Inelastic Scattering of X-rays with Very High Energy Resolution Vol. 125 (Springer, Berlin, 2006).


    Google Scholar
     

  • 54.

    Schwoerer-Böhning, M., Macrander, A. T. & Arms, D. A. Phonon dispersion of diamond measured by inelastic X-ray scattering. Phys. Rev. Lett. 80, 5572–5575. https://doi.org/10.1103/PhysRevLett.80.5572 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 55.

    Desnoyehs, J. E. & Morrison, J. A. The heat capacity of diamond between 12 (cdot) 8 and 277k. Philos. Mag. J. Theor. Exp. Appl. Phys. 3, 42–48. https://doi.org/10.1080/14786435808243223 (1958).

    Article 

    Google Scholar
     

  • 56.

    Kozlowski, P. M., Crowley, B. J. B., Gericke, D. O., Regan, S. P. & Gregori, G. Theory of Thomson scattering in inhomogeneous media. Sci. Rep. 6, 24283. https://doi.org/10.1038/srep24283 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Beuermann, T.-N., Redmer, R. & Bornath, T. “Thomson” scattering from dense inhomogeneous plasmas. Phys. Rev. E 99, 053205. https://doi.org/10.1103/PhysRevE.99.053205 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 58.

    Amann, J. et al. Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photonics 6, 693–698. https://doi.org/10.1038/nphoton.2012.180 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 59.

    Falcone, R. et al.Workshop Report: Brightest Light Initiative (March 27-9 2019, OSA Headquarters, Washington, D.C.) (2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *