An efficient green ionic liquid for the corrosion inhibition of reinforcement steel in neutral and alkaline highly saline simulated concrete pore solutions


  • 1.

    Angst Ueli, E. B., Larsen Claus, K. & Vennesland, Ø. Critical chloride content in reinforced concrete: a review. Cem. Concr. Res. 39, 1122–1138. https://doi.org/10.1016/j.cemconres.2009.08.006 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Glasser, F. P. & Samson Eric, M. J. Durability of concrete: degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 38, 226–246. https://doi.org/10.1016/j.cemconres.2007.09.015 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Hu, J., Cheng, X., Li, X., Deng, P. & Wang, G. The coupled effect of temperature and carbonation on the corrosion of rebars in the simulated concrete pore solutions. J. Chem. https://doi.org/10.1155/2015/462605 (2015).

    Article 

    Google Scholar
     

  • 4.

    Xu, C. et al. Organic corrosion inhibitor of triethylenetetramine into chloride contamination concrete by eletro-injection method. Constr. Build. Mater. 115, 602–617. https://doi.org/10.1016/j.conbuildmat.2016.04.076 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Song, H. W., Ann, K. Y., Pack, S. W. & Lee, C. H. Factors influencing chloride transport and chloride threshold level for the prediction of service life of concrete structures. Int. J. Struct. Eng. 1, 131–144. https://doi.org/10.1504/IJStructE.2010.031481(2010) (2010).

    Article 

    Google Scholar
     

  • 6.

    Wang, W., Chen, H., Li, X. & Zhu, Z. Corrosion behavior of steel bars immersed in simulated pore solutions of alkali-activated slag mortar. Constr. Build. Mater. 143, 289–297. https://doi.org/10.1016/j.conbuildmat.2017.03.132 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Liu, R., Jiang, L., Xu, J., Xiong, C. & Song, Z. Influence of carbonation on chloride-induced reinforcement corrosion in simulated concrete pore solutions. Constr. Build. Mater. 56, 16–20. https://doi.org/10.1016/j.conbuildmat.2014.01.030 (2014).

    Article 

    Google Scholar
     

  • 8.

    Liu, M., Cheng, X., Li, X., Pan, Y. & Li, J. Effect of Cr on the passive film formation mechanism of steel rebar in saturated calcium hydroxide solution. Appl. Surf. Sci. 389, 1182–1191. https://doi.org/10.1016/j.apsusc.2016.08.074 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Liu, M., Cheng, X., Li, X., Jin, Z. & Liu, H. Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution. Constr. Build. Mater. 93, 884–890. https://doi.org/10.1016/j.conbuildmat.2015.05.073 (2015).

    Article 

    Google Scholar
     

  • 10.

    Feng, X., Zuo, Y., Tang, Y., Zhao, X. & Zhao, J. The influence of strain on the passive behavior of carbon steel in cement extract. Corros. Sci. 65, 542–548. https://doi.org/10.1016/j.corsci.2012.08.060 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Veleva Lucien, A.-A., Mario, A., Graves-Brook, M. K. & Wipf, D. O. Comparative cyclic voltammetry and surface analysis of passive films grown on stainless steel 316 in concrete pore model solutions. J. Electroanal. Chem. 537, 85–93. https://doi.org/10.1016/S0022-0728(02)01253-6 (2002).

    Article 

    Google Scholar
     

  • 12.

    Koleva, D. A. Electrochemical behavior of corroded and protected construction steel in cement extract. Mater. Corros. 62, 240–251. https://doi.org/10.1002/maco.200905488 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Addari, D. A., Elsener, B. E. & Rossi, A. N. Electrochemistry and surface chemistry of stainless steels in alkaline media simulating concrete pore solutions. Electrochim. Acta 53, 8078–8086. https://doi.org/10.1016/j.electacta.2008.06.007 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Matschei, T., Lothenbach, B. & Glasser, F. P. The AFm phase in Portland cement. Cem. Concr. Res. 37, 118–130. https://doi.org/10.1016/j.cemconres.2006.10.010 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Goni, S. & Andrade, C. Synthetic concrete pore solution chemistry and rebar corrosion rate in the presence of chlorides. Cem. Concr. Res. 20, 525–539. https://doi.org/10.1016/0008-8846(90)90097-H (1990).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Fayala, I., Dhouibi, L., Nóvoa, X. R. & Ouezdou, M. B. Effect of inhibitors on the corrosion of galvanized steel and on mortar properties. Cem. Concr. Compos. 35, 181–189. https://doi.org/10.1016/j.cemconcomp.2012.08.014 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Marcos-Meson, V. et al. Corrosion resistance of steel fibre reinforced concrete: a literature review. Cem. Concr. Res. 103, 1–20. https://doi.org/10.1016/j.cemconres.2017.05.016 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Glanc-Gostkiewicz, M., Sophocleous, M., Atkinson, J. K. & Garcia-Breijo, E. Performance of miniaturised thick-film solid state pH sensors. Procedia Eng. 47, 1299–1302. https://doi.org/10.1016/j.proeng.2012.09.393 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Al-Sodani, K. A., Al-Amoudi, O. S., Maslehuddin, M. & Shameem, M. Efficiency of corrosion inhibitors in mitigating corrosion of steel under elevated temperature and chloride concentration. Constr. Build. Mater. 163, 97–112. https://doi.org/10.1016/j.conbuildmat.2017.12.097 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Nmai, C. K. Multi-functional organic corrosion inhibitor. Cem. Concr. Compos. 26, 199–207. https://doi.org/10.1016/S0958-9465(03)00039-8 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Xu, C. et al. Organic corrosion inhibitor of triethylenetetramine into chloride contamination concrete by eletro-injection method. Constr. Build. Mater. 115, 602–617. https://doi.org/10.1016/j.conbuildmat.2016.04.076 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Gartner Nina, K. T. & Legat, A. The efficiency of a corrosion inhibitor on steel in a simulated concrete environment. Mater. Chem. Phys. 184, 31–40. https://doi.org/10.1016/j.matchemphys.2016.08.047 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Gaidis, J. M. Chemistry of corrosion inhibitors. Cem. Concr. Compos. 26, 181–189. https://doi.org/10.1016/S0958-9465(03)00037-4 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Al-Amoudi, O. S., Maslehuddin, M., Lashari, A. N. & Almusallam, A. A. Effectiveness of corrosion inhibitors in contaminated concrete. Cem. Concr. Compos. 25, 439–449. https://doi.org/10.1016/S0958-9465(02)00084-7 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Verbruggen, H., Terryn, H. & De Graeve, I. Inhibitor evaluation in different simulated concrete pore solution for the protection of steel rebars. Constr. Build. Mater. 124, 887–896. https://doi.org/10.1016/j.conbuildmat.2016.07.115 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Zheng, H., Li, W., Ma, F. & Kong, Q. The effect of a surface-applied corrosion inhibitor on the durability of concrete. Constr. Build. Mater. 37, 36–40. https://doi.org/10.1016/j.conbuildmat.2012.07.007 (2012).

    Article 

    Google Scholar
     

  • 27.

    Fouda, A. S., Elewady, G. Y., Shalabi, K. & Abd El-Aziz, H. K. Alcamines as corrosion inhibitors for reinforced steel and their effect on cement based materials and mortar performance. RSC Adv. 5, 36957–36968. https://doi.org/10.1039/C5RA00717H (2015).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Ali, B. S., Ali, B. H., Yusoff, R. & Aroua, M. K. Carbon steel corrosion behaviors in carbonated aqueous mixtures of monoethanolamine and 1-n-butyl-3-methylimidazolium tetrafluoroborate. Int. J. Electrochem. Sci. 7, 3835 (2012).


    Google Scholar
     

  • 29.

    Fei, F. L., Hu, J., Wei, J. X., Yu, Q. J. & Chen, Z. S. Corrosion performance of steel reinforcement in simulated concrete pore solutions in the presence of imidazoline quaternary ammonium salt corrosion inhibitor. Constr. Build. Mater. 70, 43–53. https://doi.org/10.1016/j.conbuildmat.2014.07.082 (2014).

    Article 

    Google Scholar
     

  • 30.

    Bryan, N. S., Alexander, D. D., Coughlin, J. R., Milkowski, A. L. & Boffetta, P. Ingested nitrate and nitrite and stomach cancer risk: an updated review. Food Chem. Toxicol. 50, 3646–3665. https://doi.org/10.1016/j.fct.2012.07.062 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Ngala, V. T., Page, C. L. & Page, M. M. Corrosion inhibitor systems for remedial treatment of reinforced concrete. Part 1: calcium nitrite. Corros. Sci. 44, 2073–2087. https://doi.org/10.1016/S0010-938X(02)00012-4 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Bara, J. E. et al. Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J. Membr. Sci. 321, 3–7. https://doi.org/10.1016/j.memsci.2007.12.033 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621. https://doi.org/10.1038/nmat2448 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Yang, H., Gu, Y., Deng, Y. & Shi, F. Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chem. Commun. https://doi.org/10.1039/B108451H (2002).

    Article 

    Google Scholar
     

  • 35.

    Zhou, X., Yang, H. & Wang, F. [BMIM]BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution. Electrochim. Acta 56, 4268–4275. https://doi.org/10.1016/j.electacta.2011.01.081 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Chakraborty, I. et al. Synergistic Corrosion Inhibition of Mild Steel in Aqueous Chloride Solutions by an Imidazolinium Carboxylate Salt. ACS Sustainable Chem. Eng. 4, 1746–1755. https://doi.org/10.1021/acssuschemeng.5b01725 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Cabrini, M., Lorenzi, S. & Pastore, T. Cyclic voltammetry evaluation of inhibitors for localised corrosion in alkaline solutions. Electrochim. Acta 124, 156–164. https://doi.org/10.1016/j.electacta.2013.10.062 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Veleva Lucien, A.-A.M.A., Graves-Brook, M. K. & Wipf, D. O. Voltammetry and surface analysis of AISI 316 stainless steel in chloride-containing simulated concrete pore environment. J. Electroanal. Chem. 578, 45–53. https://doi.org/10.1016/j.jelechem.2004.12.019 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Garcés, P., Saura, P., Zornoza, E. & Andrade, C. Influence of pH on the nitrite corrosion inhibition of reinforcing steel in simulated concrete pore solution. Corros. Sci. 53, 3991–4000. https://doi.org/10.1016/j.corsci.2011.08.002 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Chang, C. F. & Chen, J. W. The experimental investigation of concrete carbonation depth. Cem. Concr. Res. 36, 1760–1767. https://doi.org/10.1016/j.cemconres.2004.07.025 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 41.

    Sanchez, J. M., Vicario, I., Albizuri, J., Guraya, T. & Acuña, E. M. Enhancing the corrosion resistance of reinforcing steel under aggressive operational conditions using behentrimonium chloride. Sci. Rep. 9, 18115. https://doi.org/10.1038/s41598-019-54669-y (2019).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Shahzad Khuram, S. M. H. et al. Electrochemical and thermodynamic study on the corrosion performance of API X120 steel in 3.5% NaCl solution. Sci. Rep. 10, 4314. https://doi.org/10.1038/s41598-020-61139-3 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Sliem Mostafa, H. et al. aeo7 surfactant as an eco-friendly corrosion inhibitor for carbon steel in HCl solution. Sci. Rep. 9, 2319. https://doi.org/10.1038/s41598-018-37254-7 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Poursaee, A. & Hansson, C. M. Reinforcing steel passivation in mortar and pore solution. Cem. Concr. Res. 37, 1127–1133. https://doi.org/10.1016/j.cemconres.2007.04.005 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Ghantous, R. M., Poyet, S., L’Hostis, V., Tran, N. C. & François, R. Effect of crack openings on carbonation-induced corrosion. Cem. Concr. Res. 95, 257–269. https://doi.org/10.1016/j.cemconres.2017.02.014 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Wan Keshu, L. L. & Wei, S. Solid–liquid equilibrium curve of calcium in 6mol/L ammonium nitrate solution. Cem. Concr. Res. 53, 44–50. https://doi.org/10.1016/j.cemconres.2013.06.003 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Mundra Shishir, C. M., Bernal, S. A. & Provis, J. L. Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes. Cem. Concr. Res. 100, 385–397. https://doi.org/10.1016/j.cemconres.2017.08.006 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Sagoe-Crentsil, K. K., Glasser, F. P. & Irvine, J. T. Electrochemical characteristics of reinforced concrete corrosion as determined by impedance spectroscopy. Br. Corros. J. 27, 113–118. https://doi.org/10.1179/000705992798268774 (1992).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Saremi, M. & Mahallati, E. A study on chloride-induced depassivation of mild steel in simulated concrete pore solution. Cem. Concr. Res. 32, 1915–1921. https://doi.org/10.1016/S0008-8846(02)00895-5 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 50.

    Volpi, E., Olietti, A., Stefanoni, M. & Trasatti, S. P. Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment. J. Electroanal. Chem. 736, 38–46. https://doi.org/10.1016/j.jelechem.2014.10.023 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Valcarce, M. B. & Vázquez, M. Carbon steel passivity examined in alkaline solutions: the effect of chloride and nitrite ions. Electrochim. Acta 53, 5007–5015. https://doi.org/10.1016/j.electacta.2008.01.091 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Lu, Y. Y., Hu, J. Y., Li, S. & Tang, W. S. Active and passive protection of steel reinforcement in concrete column using carbon fibre reinforced polymer against corrosion. Electrochim. Acta 278, 124–136. https://doi.org/10.1016/j.electacta.2018.05.037 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 53.

    Eichler, T., Isecke, B. & Bäßler, R. Investigations on the re-passivation of carbon steel in chloride containing concrete in consequence of cathodic polarisation. Mater. Corros. 60, 119–129. https://doi.org/10.1002/maco.200805142 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 54.

    Tang Fujian, C. G. & Brow, R. K. Chloride-induced corrosion mechanism and rate of enamel- and epoxy-coated deformed steel bars embedded in mortar. Cem. Concr. Res. 82, 58–73. https://doi.org/10.1016/j.cemconres.2015.12.015 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Shi, J., Sun, W., Jiang, J. & Zhang, Y. Influence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solution. Constr. Build. Mater. 111, 805–813. https://doi.org/10.1016/j.conbuildmat.2016.02.107 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Królikowski, A. & Kuziak, J. Impedance study on calcium nitrite as a penetrating corrosion inhibitor for steel in concrete. Electrochim. Acta 56, 7845–7853. https://doi.org/10.1016/j.electacta.2011.01.069 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 57.

    Fajardo, S., Bastidas, D. M., Criado, M., Romero, M. & Bastidas, J. M. Corrosion behaviour of a new low-nickel stainless steel in saturated calcium hydroxide solution. Constr. Build. Mater. 25, 4190–4196. https://doi.org/10.1016/j.conbuildmat.2011.04.056 (2011).

    Article 

    Google Scholar
     

  • 58.

    Falzone, G., Balonis, M., Bentz, D., Jones, S. & Sant, G. Anion capture and exchange by functional coatings: new routes to mitigate steel corrosion in concrete infrastructure. Cem. Concr. Res. 101, 82–92. https://doi.org/10.1016/j.cemconres.2017.08.021 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Radwan, A. B., Sliem, M. H., Okonkwo, P. C., Shibl, M. F. & Abdullah, A. M. Corrosion inhibition of API X120 steel in a highly aggressive medium using stearamidopropyl dimethylamine. J. Mol. Liq. 236, 220–231. https://doi.org/10.1016/j.molliq.2017.03.116 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 60.

    García, J. et al. Effect of cathodic protection on steel–concrete bond strength using ion migration measurements. Cem. Concr. Compos. 34, 242–247. https://doi.org/10.1016/j.cemconcomp.2011.09.014 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 61.

    Bellezze, T., Timofeeva, D., Giuliani, G. & Roventi, G. Effect of soluble inhibitors on the corrosion behaviour of galvanized steel in fresh concrete. Cem. Concr. Res. 107, 1–10. https://doi.org/10.1016/j.cemconres.2018.02.008 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Cabrini, M., Fontana, F., Lorenzi, S., Pastore, T. & Pellegrini, S. Effect of organic inhibitors on chloride corrosion of steel rebars in alkaline pore solution. J. Chem. 2015, 10. https://doi.org/10.1155/2015/521507 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 63.

    Unnisa, C. B. Linear polyesters as effective corrosion inhibitors for steel rebars in chloride induced alkaline medium: an electrochemical approach. Constr. Build. Mater. 165, 866–876. https://doi.org/10.1016/j.conbuildmat.2018.01.080 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 64.

    Frankel, G. S. Pitting corrosion of metals. J. Electrochem. Soc. 145, 2186. https://doi.org/10.1149/1.1838615 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 65.

    Kouřil, M., Novák, P. & Bojko, M. Threshold chloride concentration for stainless steels activation in concrete pore solutions. Cem. Concr. Res. 40, 431–436. https://doi.org/10.1016/j.cemconres.2009.11.005 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 66.

    Etteyeb, N., Dhouibi, L., Takenouti, H., Alonso, M. C. & Triki, E. Corrosion inhibition of carbon steel in alkaline chloride media by Na3PO4. Electrochim. Acta 52, 7506–7512. https://doi.org/10.1016/j.electacta.2007.03.003 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 67.

    Criado, M. et al. Organic corrosion inhibitor mixtures for reinforcing steel embedded in carbonated alkali-activated fly ash mortar. Constr. Build. Mater. 35, 30–37. https://doi.org/10.1016/j.conbuildmat.2012.02.078 (2012).

    Article 

    Google Scholar
     

  • 68.

    Wasim, M., Ngo, T. D. & Abid, M. Investigation of long-term corrosion resistance of reinforced concrete structures constructed with various types of concretes in marine and various climate environments. Constr. Build. Mater. 237, 117701. https://doi.org/10.1016/j.conbuildmat.2019.117701 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 69.

    Prabakar, J., Dendorkar, N. & Morchhale, R. K. Electrochemical behavior of mild and corrosion resistant concrete reinforcing steels. Constr. Build. Mater. 232, 117205. https://doi.org/10.1016/j.conbuildmat.2019.117205 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 70.

    Hussain, S. & Ehtesham, R. Effect of temperature on pore solution composition in plain cements. Cem. Concr. Res. 23, 1357–1368. https://doi.org/10.1016/0008-8846(93)90073-I (1993).

    CAS 
    Article 

    Google Scholar
     

  • 71.

    Böhni, H. & Uhlig, H. H. Environmental factors affecting the critical pitting potential of aluminum. J. Electrochem. Soc. 116, 906–910. https://doi.org/10.1149/1.2412167 (1969).

    ADS 
    Article 

    Google Scholar
     

  • 72.

    Zheng, H., Li, W., Ma, F. & Kong, Q. The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH)2 solutions. Cem. Concr. Res. 55, 102–108. https://doi.org/10.1016/j.cemconres.2013.10.005 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 73.

    Cellat, K., Tezcan, F., Beyhan, B., Kardaş, G. & Paksoy, H. A comparative study on corrosion behavior of rebar in concrete with fatty acid additive as phase change material. Constr. Build. Mater. 143, 490–500. https://doi.org/10.1016/j.conbuildmat.2017.03.165 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 74.

    Verma, S. K., Bhadauria, S. S. & Akhtar, S. Monitoring corrosion of steel bars in reinforced concrete structures. Sci. World J. 2014, 9. https://doi.org/10.1155/2014/957904 (2014).

    Article 

    Google Scholar
     

  • 75.

    Lipkowski, J. et al. Molecular adsorption at metal electrodes. Electrochim. Acta 39, 1045–1056. https://doi.org/10.1016/0013-4686(94)E0019-V (1994).

    CAS 
    Article 

    Google Scholar
     

  • 76.

    Bhuvaneshwari, B., Selvaraj, A., Iyer, N. R. & Ravikumar, L. Electrochemical investigations on the performance of newly synthesized azomethine polyester on rebar corrosion. Mater. Corros. 66, 387–395. https://doi.org/10.1002/maco.201307472 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 77.

    Verma Chandrabhan, Q. M. A., Kluza, K., Makowska-Janusik, M., Olasunkanmi, L. O. & Ebenso, E. E. Corrosion inhibition of mild steel in 1M HCl by D-glucose derivatives of dihydropyrido [2,3-d:6,5-d′] dipyrimidine-2, 4, 6, 8(1H,3H, 5H,7H)-tetraone. Sci. Rep. 7, 44432. https://doi.org/10.1038/srep44432 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Wang, Y., Zuo, Y., Zhao, X. & Zha, S. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution. Appl. Surf. Sci. 379, 98–110. https://doi.org/10.1016/j.apsusc.2016.04.013 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 79.

    Fazayel, A. S., Khorasani, M. & Sarabi, A. A. The effect of functionalized polycarboxylate structures as corrosion inhibitors in a simulated concrete pore solution. Appl. Surf. Sci. 441, 895–913. https://doi.org/10.1016/j.apsusc.2018.02.012 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 80.

    Hassoune, M., Bezzar, A., Sail, L. & Ghomari, F. Corrosion inhibition of carbon steel by N, N′-Dimethylaminoethanol in simulated concrete pore solution contaminated with NaCl. J. Adhes. Sci. Technol. 32, 68–90. https://doi.org/10.1080/01694243.2017.1341190 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 81.

    Bouklah, M., Hammouti, B., Lagrenee, M. & Bentiss, F. Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. Corros. Sci. 48, 2831–2842. https://doi.org/10.1016/j.corsci.2005.08.019 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 82.

    Wells, T. & Melchers, R. E. Modelling concrete deterioration in sewers using theory and field observations. Cem. Concr. Res. 77, 82–96. https://doi.org/10.1016/j.cemconres.2015.07.003 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 83.

    Jiang, J. H. & Yuan, Y. S. Development and prediction strategy of steel corrosion rate in concrete under natural climate. Constr. Build. Mater. 44, 287–292. https://doi.org/10.1016/j.conbuildmat.2013.03.033 (2013).

    Article 

    Google Scholar
     

  • 84.

    Hussain, R. R. & Ishida, T. Enhanced electrochemical corrosion model for reinforced concrete under severe coupled action of chloride and temperature. Constr. Build. Mater. 25, 1305–1315. https://doi.org/10.1016/j.conbuildmat.2010.09.014 (2011).

    Article 

    Google Scholar
     

  • 85.

    Limousin, G. et al. Sorption isotherms: a review on physical bases, modeling and measurement. Appl. Geochem. 22, 249–275. https://doi.org/10.1016/j.apgeochem.2006.09.010 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 86.

    Loto, R. T. Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions. Results Phys. 8, 172–179. https://doi.org/10.1016/j.rinp.2017.12.003 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 87.

    Donahuce, F. M. & Noor, K. Theory of organic corrosion inhibitors: adsorption and linear free energy relationships. J. Electrochem. Soc. 112, 886–891. https://doi.org/10.1149/1.2423723 (1965).

    ADS 
    Article 

    Google Scholar
     

  • 88.

    Zeino, A., Abdulazeez, I., Khaled, M., Jawich, M. W. & Obot, I. B. Mechanistic study of polyaspartic acid (PASP) as eco-friendly corrosion inhibitor on mild steel in 3% NaCl aerated solution. J. Mol. Liq. 250, 50–62. https://doi.org/10.1016/j.molliq.2017.11.160 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 89.

    Migahed, M. A. et al. Synthesis of a new family of Schiff base nonionic surfactants and evaluation of their corrosion inhibition effect on X-65 type tubing steel in deep oil wells formation water. Mater. Chem. Phys. 125, 125–135. https://doi.org/10.1016/j.matchemphys.2010.08.082 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 90.

    Mobin, M. & Aslam, R. Experimental and theoretical study on corrosion inhibition performance of environmentally benign non-ionic surfactants for mild steel in 3.5% NaCl solution. Process Saf. Environ. Protect. 114, 279–295. https://doi.org/10.1016/j.psep.2018.01.001 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 91.

    Abd El Wanees, S., Radwan, A. B., Alsharif, M. A. & Abd El Haleem, S. M. Initiation and inhibition of pitting corrosion on reinforcing steel under natural corrosion conditions. Mater. Chem. Phys. 190, 79–95. https://doi.org/10.1016/j.matchemphys.2016.12.048 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 92.

    Abd El Haleem, S. M., Abd El Wanees, S. & Bahgat, A. Environmental factors affecting the corrosion behaviour of reinforcing steel. V. Role of chloride and sulphate ions in the corrosion of reinforcing steel in saturated Ca(OH)2 solutions. Corros. Sci. 75, 1–15. https://doi.org/10.1016/j.corsci.2013.04.049 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 93.

    Xin, H., Liu, Y., Mosallam, A., Zhang, Y. & Wang, C. Hygrothermal aging effects on flexural behavior of pultruded glass fiber reinforced polymer laminates in bridge applications. Constr. Build. Mater. 127, 237–247. https://doi.org/10.1016/j.conbuildmat.2016.09.151 (2016).

    Article 

    Google Scholar
     

  • 94.

    94BS EN 197-1:2011. Cement. Composition, specifications and conformity criteria for common cements.



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *