Analysis of factors influencing tropical lower stratospheric water vapor during 1980–2017


  • 1.

    Joshi, M. M., Charlton, A. J. & Scaife, A. A. On the influence of stratospheric water vapor changes on the tropospheric circulation. Geophys. Res. Lett. 33, L09806 (2006).

  • 2.

    Forster, P. Md. F. & Shine, K. Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett. 29, 10-11–10-14 (2002).


    Google Scholar
     

  • 3.

    Stenke, A. & Grewe, V. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry. Atmos. Chem. Phys. 5, 1257–1272 (2005).


    Google Scholar
     

  • 4.

    Wang, W., Matthes, K., Omrani, N.-E. & Latif, M. Decadal variability of tropical tropopause temperature and its relationship to the Pacific Decadal Oscillation. Sci. Rep. 6, 29537 (2016).


    Google Scholar
     

  • 5.

    Zhao, X., Sheng, Z., Li, J., Yu, H. & Wei, K. Determination of the “wave turbopause” using a numerical differentiation method. J. Geophys. Res. Atmos. 124, 10592–10607 (2019).


    Google Scholar
     

  • 6.

    Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).


    Google Scholar
     

  • 7.

    Joshi, M., Webb, M., Maycock, A. & Collins, M. Stratospheric water vapour and high climate sensitivity in a version of the HadSM3 climate model. Atmos. Chem. Phys. 10, 7161–7167 (2010).


    Google Scholar
     

  • 8.

    Le Texier, H., Solomon, S. & Garcia, R. The role of molecular hydrogen and methane oxidation in the water vapour budget of the stratosphere. Q. J. R. Meteorol. Soc. 114, 281–295 (1988).


    Google Scholar
     

  • 9.

    Brasseur, G. P. & Solomon, S. Aeronomy of The Middle Atmosphere: Chemistry and Physics of The Stratosphere and Mesosphere. Vol. 32 (Springer Science & Business Media, 2006).

  • 10.

    Tian, W., Chipperfield, M. P., Gray, L. J. & Zawodny, J. M. Quasi-biennial oscillation and tracer distributions in a coupled chemistry-climate model. J. Geophys. Res. Atmos. 111, D20301 (2006).

  • 11.

    Randel, W. J. & Jensen, E. J. Physical processes in the tropical tropopause layer and their roles in a changing climate. Nat. Geosci. 6, 169 (2013).


    Google Scholar
     

  • 12.

    Brewer, A. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q. J. R. Meteorol. Soc. 75, 351–363 (1949).


    Google Scholar
     

  • 13.

    Xie, F. et al. The key role of background sea surface temperature over the cold tongue in asymmetric responses of the Arctic stratosphere to El Niño–Southern Oscillation. Environ. Res. Lett. 13, 114007 (2018).


    Google Scholar
     

  • 14.

    Hurst, D. F. et al. Stratospheric water vapor trends over Boulder, Colorado: analysis of the 30 year Boulder record. J. Geophys. Res. Atmos. 116, D02306 (2011).

  • 15.

    Hu, D., Tian, W., Xie, F., Wang, C. & Zhang, J. Impacts of stratospheric ozone depletion and recovery on wave propagation in the boreal winter stratosphere. J. Geophys. Res. Atmos. 120, 8299–8317 (2015).


    Google Scholar
     

  • 16.

    Joshi, M. M. & Shine, K. P. A GCM study of volcanic eruptions as a cause of increased stratospheric water vapor. J. Clim. 16, 3525–3534 (2003).


    Google Scholar
     

  • 17.

    Randel, W. J., Wu, F., Russell, J. M. III, Roche, A. & Waters, J. W. Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data. J. Atmos. Sci. 55, 163–185 (1998).


    Google Scholar
     

  • 18.

    Scaife, A. A., Butchart, N., Jackson, D. R. & Swinbank, R. Can changes in ENSO activity help to explain increasing stratospheric water vapor? Geophys. Res. Lett. 30, 1880 (2003).

  • 19.

    Fueglistaler, S., Bonazzola, M., Haynes, P. & Peter, T. Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res. Atmos. 110, D08107 (2005).

  • 20.

    Fueglistaler, S. & Haynes, P. Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res. Atmos. 110, D24108 (2005).

  • 21.

    Rosenlof, K. H. & Reid, G. C. Trends in the temperature and water vapor content of the tropical lower stratosphere: sea surface connection. J. Geophys. Res. Atmos. 113, D06107 (2008).

  • 22.

    Schoeberl, M. & Dessler, A. Dehydration of the stratosphere. Atmos. Chem. Phys. 11, 8433–8446 (2011).


    Google Scholar
     

  • 23.

    Grise, K. M. & Thompson, D. W. Equatorial planetary waves and their signature in atmospheric variability. J. Atmos. Sci. 69, 857–874 (2012).


    Google Scholar
     

  • 24.

    Dessler, A., Schoeberl, M., Wang, T., Davis, S. & Rosenlof, K. Stratospheric water vapor feedback. Proc. Natl Acad. Sci. USA 110, 18087–18091 (2013).


    Google Scholar
     

  • 25.

    Wang, W., Shangguan, M., Tian, W., Schmidt, T. & Ding, A. Large uncertainties in estimation of tropical tropopause temperature variabilities due to model vertical resolution. Geophys. Res. Lett. 46, 10043–10052 (2019).


    Google Scholar
     

  • 26.

    Wang, W. et al. Solar impacts on decadal variability of tropopause temperature and lower stratospheric (LS) water vapour: a mechanism through ocean-atmosphere coupling. Clim. Dyn. 52, 5585–5604 (2019).


    Google Scholar
     

  • 27.

    Gettelman, A. et al. Radiation balance of the tropical tropopause layer. J. Geophys. Res. Atmos. 109, D07103 (2004).

  • 28.

    Fueglistaler, S. et al. Tropical tropopause layer. Rev. Geophys. 47, RG1004 (2009).

  • 29.

    Yulaeva, E., Holton, J. R. & Wallace, J. M. J. J. O. T. A. S. On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci. 51, 169–174 (1994).


    Google Scholar
     

  • 30.

    Gettelman, A. A climatology of the tropical tropopause layer. J. Meteorol. Soc. Jpn. Ser. II 80, 911–924 (2002).


    Google Scholar
     

  • 31.

    Son, S. W., Tandon, N. F. & Polvani, L. M. The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements. J. Geophys. Res. Atmos. 116, D20113 (2011).

  • 32.

    Birner, T. & Bönisch, H. Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys. 11, 817–827 (2011).


    Google Scholar
     

  • 33.

    Holton, J. R. et al. Stratosphere-troposphere exchange. Rev. Geophys. 33, 403–439 (1995).


    Google Scholar
     

  • 34.

    Wang, L. & Waugh, D. W. Seasonality in future tropical lower stratospheric temperature trends. J. Geophys. Res. Atmos. 120, 980–991 (2015).


    Google Scholar
     

  • 35.

    Xia, Y., Huang, Y., Hu, Y. & Yang, J. Impacts of tropical tropopause warming on the stratospheric water vapor. Clim. Dyn. 53, 3409–3418 (2019).

  • 36.

    Lei, D., Jin, L., Zhu, Z. & Gao, M. Advances in the study of water vapor vertical transport into stratosphere by deep convections. J. Nanjing Univ. Inf. Sci. Technol. 4, 241 (2012).


    Google Scholar
     

  • 37.

    Herman, R. L. et al. Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection. Atmos. Chem. Phys. 17, 6113 (2017).


    Google Scholar
     

  • 38.

    Dong, W., Lin, Y., Zhang, M. & Huang, X. J. G. R. L. Footprint of tropical mesoscale convective system variability on stratospheric water vapor. Geophys. Res. Lett. 47, https://doi.org/10.1029/2019GL086320 (2020).

  • 39.

    Highwood, E. & Hoskins, B. The tropical tropopause. Q. J. R. Meteorol. Soc. 124, 1579–1604 (1998).


    Google Scholar
     

  • 40.

    He, Y., Sheng, Z. & He, M. Spectral analysis of gravity waves from near space high-resolution balloon data in Northwest China. Atmosphere 11, 133 (2020).


    Google Scholar
     

  • 41.

    Calvo, N., Giorgetta, M. A., Garcia-Herrera, R. & Manzini, E. Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J. Geophys. Res. Atmos. 114, D13109 (2009).

  • 42.

    Son, S. W., Lim, Y., Yoo, C., Hendon, H. & Kim, J. Stratospheric control of Madden-Julian Oscillation. J. Clim. 30, 1909–1922 (2017).


    Google Scholar
     

  • 43.

    Garcia-Herrera, R., Calvo, N., Garcia, R. & Giorgetta, M. Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res. Atmos. 111, D06101 (2006).

  • 44.

    Free, M. & Seidel, D. J. Observed El Niño–Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res. Atmos. 114, D23108 (2009).

  • 45.

    Randel, W. J., Garcia, R. R., Calvo, N. & Marsh, D. ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett. 36, L15822 (2009).

  • 46.

    Calvo, N., Garcia, R., Randel, W. & Marsh, D. Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci. 67, 2331–2340 (2010).


    Google Scholar
     

  • 47.

    Gettelman, A. et al. El Nino as a natural experiment for studying the tropical tropopause region. J. Clim. 14, 3375–3392 (2001).


    Google Scholar
     

  • 48.

    Geller, M. A., Zhou, X. & Zhang, M. Simulations of the interannual variability of stratospheric water vapor. J. Atmos. Sci. 59, 1076–1085 (2002).


    Google Scholar
     

  • 49.

    Hatsushika, H. & Yamazaki, K. Stratospheric drain over Indonesia and dehydration within the tropical tropopause layer diagnosed by air parcel trajectories. J. Geophys. Res. Atmos. 108, 4610 (2003).

  • 50.

    Xie, F., Li, J., Tian, W., Feng, J. & Huo, Y. Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys. 12, 5259–5273 (2012).


    Google Scholar
     

  • 51.

    Camp, C. & Tung, K. K. Stratospheric polar warming by ENSO in winter: a statistical study. Geophys. Res. Lett. 34, L04809 (2007).

  • 52.

    Garfinkel, C. I. & Hartmann, D. L. Effects of the El Niño–Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J. Geophys. Res. Atmos. 112, D19112 (2007).

  • 53.

    Garfinkel, C. & Hartmann, D. Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res. Atmos. 113, D18114 (2008).

  • 54.

    Ren, R.-C., Cai, M., Xiang, C. & Wu, G. Observational evidence of the delayed response of stratospheric polar vortex variability to ENSO SST anomalies. Clim. Dyn. 38, 1345–1358 (2012).


    Google Scholar
     

  • 55.

    Li, T. et al. Southern hemisphere summer mesopause responses to El Niño–Southern oscillation. J. Clim. 29, 6319–6328 (2016).


    Google Scholar
     

  • 56.

    Sassi, F., Kinnison, D., Boville, B., Garcia, R. & Roble, R. Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res. Atmos. 109, D17108 (2004).

  • 57.

    Manzini, E., Giorgetta, M., Esch, M., Kornblueh, L. & Roeckner, E. The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Clim. 19, 3863–3881 (2006).


    Google Scholar
     

  • 58.

    Taguchi, M. & Hartmann, D. L. Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Clim. 19, 324–332 (2006).


    Google Scholar
     

  • 59.

    Garfinkel, C. I., Hurwitz, M. M., Oman, L. D. & Waugh, D. W. Contrasting effects of Central Pacific and Eastern Pacific El Niño on stratospheric water vapor. Geophys. Res. Lett. 40, 4115–4120 (2013).


    Google Scholar
     

  • 60.

    Rao, J. & Ren, R. Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 2. Model study with WACCM. J. Geophys. Res. Atmos. 121, 9017–9032 (2016).


    Google Scholar
     

  • 61.

    Xie, F. et al. Effect of the Indo-Pacific warm pool on lower-stratospheric water vapor and comparison with the effect of ENSO. J. Clim. 31, 929–943 (2018).


    Google Scholar
     

  • 62.

    Mitchell, D., Gray, L. & Charlton-Perez, A. The structure and evolution of the stratospheric vortex in response to natural forcings. J. Geophys. Res. Atmos. 116, D15110 (2011).

  • 63.

    Iza, M. & Calvo, N. Role of stratospheric sudden warmings on the response to central Pacific El Niño. Geophys. Res. Lett. 42, 2482–2489 (2015).


    Google Scholar
     

  • 64.

    Zhang, J., Tian, W., Wang, Z., Xie, F. & Wang, F. The influence of ENSO on northern midlatitude ozone during the winter to spring transition. J. Clim. 28, 4774–4793 (2015).


    Google Scholar
     

  • 65.

    Iza, M., Calvo, N. & Manzini, E. The stratospheric pathway of La Niña. J. Clim. 29, 8899–8914 (2016).


    Google Scholar
     

  • 66.

    Ashok, K. & Yamagata, T. Climate change: the El Niño with a difference. Nature 461, 481 (2009).


    Google Scholar
     

  • 67.

    Yeh, S.-W. et al. El Niño in a changing climate. Nature 461, 511 (2009).


    Google Scholar
     

  • 68.

    Hegyi, B. M. & Deng, Y. A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation. J. Geophys. Res. Atmos. 116, D20121 (2011).

  • 69.

    Hurwitz, M., Newman, P., Oman, L. & Molod, A. Response of the Antarctic stratosphere to two types of El Niño events. J. Atmos. Sci. 68, 812–822 (2011).


    Google Scholar
     

  • 70.

    Hurwitz, M. M., Newman, P. A. & Garfinkel, C. I. The Arctic vortex in March 2011: a dynamical perspective. Atmos. Chem. Phys. 11, 11447–11453 (2011).


    Google Scholar
     

  • 71.

    Zubiaurre, I. & Calvo, N. The El Niño–Southern Oscillation (ENSO) Modoki signal in the stratosphere. J. Geophys. Res. Atmos. 117, D04104 (2012).

  • 72.

    Sung, M.-K., Kim, B.-M. & An, S.-I. Altered atmospheric responses to eastern Pacific and central Pacific El Niños over the North Atlantic region due to stratospheric interference. Clim. Dyn. 42, 159–170 (2014).


    Google Scholar
     

  • 73.

    Xie, F., Li, J., Tian, W., Zhang, J. & Sun, C. The relative impacts of El Niño Modoki, canonical El Niño, and QBO on tropical ozone changes since the 1980s. Environ. Res. Lett. 9, 064020 (2014).


    Google Scholar
     

  • 74.

    Xie, F., Li, J., Tian, W., Zhang, J. & Shu, J. The impacts of two types of El Niño on global ozone variations in the last three decades. Adv. Atmos. Sci. 31, 1113–1126 (2014).


    Google Scholar
     

  • 75.

    Lu, J. et al. Interannual variations in lower stratospheric ozone during the period 1984–2016. J. Geophys. Res. Atmos. 124, 8225–8241 (2019).


    Google Scholar
     

  • 76.

    Reid, G. C. & Gage, K. S. Interannual variations in the height of the tropical tropopause. J. Geophys. Res. Atmos. 90, 5629–5635 (1985).


    Google Scholar
     

  • 77.

    Ding, Q. & Fu, Q. A warming tropical central Pacific dries the lower stratosphere. Clim. Dyn. 50, 2813–2827 (2018).


    Google Scholar
     

  • 78.

    Shangguan, M. Variability of temperature and ozone in the upper troposphere and lower stratosphere from multi-satellite observations and reanalysis data. Atmos. Chem. Phys. 19, 6659–6679 (2019).


    Google Scholar
     

  • 79.

    Reed, R. A tentative model of the 26-month oscillation in tropical latitudes. Q. J. R. Meteorol. Soc. 90, 441–466 (1964).


    Google Scholar
     

  • 80.

    Randel, W. J., Wu, F., Oltmans, S. J., Rosenlof, K. & Nedoluha, G. E. Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci. 61, 2133–2148 (2004).


    Google Scholar
     

  • 81.

    Wallace, J. M., Panetta, R. L. & Estberg, J. Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space. J. Atmos. Sci. 50, 1751–1762 (1993).


    Google Scholar
     

  • 82.

    Kumar, V. et al. Impact of quasi-biennial oscillation on the inter-annual variability of the tropopause height and temperature in the tropics: a study using COSMIC/FORMOSAT-3 observations. Atmos. Res. 139, 62–70 (2014).


    Google Scholar
     

  • 83.

    Rosenlof, K. H. How water enters the stratosphere. Science 302, 1691–1692 (2003).


    Google Scholar
     

  • 84.

    Newell, R. E. & Gould-Stewart, S. A stratospheric fountain? J. Atmos. Sci. 38, 2789–2796 (1981).


    Google Scholar
     

  • 85.

    Ding, Q. & Steig, E. J. Temperature change on the Antarctic Peninsula linked to the tropical Pacific. J. Clim. 26, 7570–7585 (2013).


    Google Scholar
     

  • 86.

    Garfinkel, C., Hurwitz, M., Waugh, D. & Butler, A. Are the teleconnections of Central Pacific and Eastern Pacific El Niño distinct in boreal wintertime? Clim. Dyn 41, 1835–1852 (2013).


    Google Scholar
     

  • 87.

    Wang, L. et al. Prediction of northern summer low-frequency circulation using a high-order vector auto-regressive model. Clim. Dyn. 46, 693–709 (2016).


    Google Scholar
     

  • 88.

    Xie, F., Li, J., Tian, W., Li, Y. & Feng, J. Indo-Pacific warm pool area expansion, modoki activity, and tropical cold-point tropopause temperature variations. Sci. Rep. 4, 4552 (2014).


    Google Scholar
     

  • 89.

    Davis, S. M. et al. The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies. Earth Syst. Sci. Data 8, 461 (2016).


    Google Scholar
     

  • 90.

    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).


    Google Scholar
     

  • 91.

    Garfinkel, C. I. & Hartmann, D. J. J. O. G. R. A. Influence of the quasi-biennial oscillation on the North Pacific and El Niño teleconnections. J. Geophys. Res. Atmos. 115, D20116 (2010).

  • 92.

    Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans. 112, C11007 (2007).

  • 93.

    Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteor. Soc. 94, 1339–1360 (2013).


    Google Scholar
     

  • 94.

    Neale, R. B. et al. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Clim. 26, 5150–5168 (2013).


    Google Scholar
     

  • 95.

    Danabasoglu, G. et al. The CCSM4 ocean component. J. Clim. 25, 1361–1389 (2012).


    Google Scholar
     

  • 96.

    Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B. & Hunke, E. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J. Clim. 25, 1413–1430 (2012).


    Google Scholar
     

  • 97.

    Garcia, R., Marsh, D., Kinnison, D., Boville, B. & Sassi, F. Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res. Atmos. 112, D09301 (2007).

  • 98.

    Marsh, D. R. et al. Climate change from 1850 to 2005 simulated in CESM1 (WACCM). J. Clim. 26, 7372–7391 (2013).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *