• 1.

    Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 2.

    Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the bcl-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Martinou, J. C. & Youle, R. J. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21, 92–101 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Gross, A. & Katz, S. G. Non-apoptotic functions of bcl-2 family proteins. Cell Death Differ. 24, 1348–1358 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 5.

    Ichim, G. & Tait, S. W. A fate worse than death: apoptosis as an oncogenic process. Nat. Rev. Cancer 16, 539–548 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Delbridge, A. R., Grabow, S., Strasser, A. & Vaux, D. L. Thirty years of bcl-2: translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer 16, 99–109 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Lindenboim, L., Blacher, E., Borner, C. & Stein, R. Regulation of stress-induced nuclear protein redistribution: a new function of bax and bak uncoupled from bcl-x(l). Cell Death Differ. 17, 346–359 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Lindenboim, L., Ferrando-May, E., Borner, C. & Stein, R. Non-canonical function of bax in stress-induced nuclear protein redistribution. Cell. Mol. Life Sci. 70, 3013–3027 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Lindenboim, L., Sasson, T., Worman, H. J., Borner, C. & Stein, R. Cellular stress induces bax-regulated nuclear bubble budding and rupture followed by nuclear protein release. Nucleus 5, 527–541 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    De Vos, W. H. et al. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20, 4175–4186 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 11.

    Vargas, J. D., Hatch, E. M., Anderson, D. J. & Hetzer, M. W. Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3, 88–100 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 12.

    Robijns, J. et al. In silico synchronization reveals regulators of nuclear ruptures in lamin a/c deficient model cells. Sci. Rep. 6, 30325 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    de Noronha, C. M. et al. Dynamic disruptions in nuclear envelope architecture and integrity induced by hiv-1 vpr. Science 294, 1105–1108 (2001).

    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Speese, S. D. et al. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic wnt signaling. Cell 149, 832–846 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Raab, M. et al. Escrt iii repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Irianto, J. et al. DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27, 210–223 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 18.

    Le Berre, M., Aubertin, J. & Piel, M. Fine control of nuclear confinement identifies a threshold deformation leading to lamina rupture and induction of specific genes. Integr. Biol. 4, 1406–1414 (2012).

    Article 
    CAS 

    Google Scholar
     

  • 19.

    Chen, N. Y. et al. An absence of lamin b1 in migrating neurons causes nuclear membrane ruptures and cell death. Proc. Natl Acad. Sci. USA 116, 25870–25879 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Hatch, E. M. & Hetzer, M. W. Nuclear envelope rupture is induced by actin-based nucleus confinement. J. Cell. Biol. 215, 27–36 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Chen, N. Y. et al. Fibroblasts lacking nuclear lamins do not have nuclear blebs or protrusions but nevertheless have frequent nuclear membrane ruptures. Proc. Natl Acad. Sci. USA 115, 10100–10105 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Chang, W., Worman, H. J. & Gundersen, G. G. Accessorizing and anchoring the linc complex for multifunctionality. J. Cell. Biol. 208, 11–22 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 23.

    Burke, B. Chain reaction: LINC complexes and nuclear positioning. F1000Res. F1000 Faculty Rev-136. 8, https://doi.org/10.12688/f1000research.16877.1 (2019).

  • 24.

    Starr, D. A. Kash and sun proteins. Curr. Biol. 21, R414–R415 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Zhang, Q. et al. Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J. Cell Sci. 118, 673–687 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Zhang, Q. et al. Nesprins: A novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 114, 4485–4498 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Kutscheidt, S. et al. Fhod1 interaction with nesprin-2g mediates tan line formation and nuclear movement. Nat. Cell Biol. 16, 708–715 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 28.

    Antoku, S. et al. Erk1/2 phosphorylation of fhod connects signaling and nuclear positioning alternations in cardiac laminopathy. Dev. Cell 51, 602–616 e612 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Jayo, A. et al. Fascin regulates nuclear movement and deformation in migrating cells. Dev. Cell 38, 371–383 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Wilhelmsen, K. et al. Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J. Cell. Biol. 171, 799–810 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Razafsky, D. & Hodzic, D. A variant of nesprin1 giant devoid of kash domain underlies the molecular etiology of autosomal recessive cerebellar ataxia type I. Neurobiol. Dis. 78, 57–67 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Luxton, G. W., Gomes, E. R., Folker, E. S., Vintinner, E. & Gundersen, G. G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329, 956–959 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 33.

    Khatau, S. B. et al. The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci. Rep. 2, 488 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 34.

    Nechushtan, A., Smith, C. L., Hsu, Y. T. & Youle, R. J. Conformation of the bax c-terminus regulates subcellular location and cell death. EMBO J. 18, 2330–2341 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Schinzel, A. et al. Conformational control of bax localization and apoptotic activity by pro168. J. Cell. Biol. 164, 1021–1032 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Riley J. S. et al. Mitochondrial inner membrane permeabilisation enables mt DNA release during apoptosis. EMBO J. 37, e99238 (2018).

  • 37.

    Wang, C. & Youle, R. J. Predominant requirement of bax for apoptosis in hct116 cells is determined by mcl-1’s inhibitory effect on bak. Oncogene 31, 3177–3189 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Ding, Y. et al. Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange. Nat. Methods 12, 195–198 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 39.

    Östlund, C. et al. Dynamics and molecular interactions of linker of nucleoskeleton and cytoskeleton (linc) complex proteins. J. Cell Sci. 122, 4099–4108 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 40.

    Zhu, R., Antoku, S. & Gundersen, G. G. Centrifugal displacement of nuclei reveals multiple linc complex mechanisms for homeostatic nuclear positioning. Curr. Biol. 27, 3097–3110 e3095 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Crisp, M. et al. Coupling of the nucleus and cytoplasm: role of the linc complex. J. Cell. Biol. 172, 41–53 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 42.

    Lindenboim, L., Zohar, H., Worman, H. J. & Stein, R. The nuclear envelope: target and mediator of the apoptotic process. Cell Death Discov. 6, 29 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 43.

    Goping, I. S. et al. Regulated targeting of bax to mitochondria. J. Cell Biol. 143, 207–215 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 44.

    Garner, T. P. et al. An autoinhibited dimeric form of bax regulates the bax activation pathway. Mol. Cell 63, 485–497 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Aslan, J. E. & Thomas, G. Death by committee: organellar trafficking and communication in apoptosis. Traffic 10, 1390–1404 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 46.

    Wilson, M. H. & Holzbaur, E. L. Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development 142, 218–228 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 47.

    Zhu, R., Liu, C. & Gundersen, G. G. Nuclear positioning in migrating fibroblasts. Semin. Cell Dev. Biol. 82, 41–50 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 48.

    Li, S. et al. Transient assembly of f-actin on the outer mitochondrial membrane contributes to mitochondrial fission. J. Cell. Biol. 208, 109–123 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Tang, H. L., Le, A. H. & Lung, H. L. The increase in mitochondrial association with actin precedes bax translocation in apoptosis. Biochem. J. 396, 1–5 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Loo T. H. et al. The mammalian linc complex component sun1 regulates muscle regeneration by modulating drosha activity. eLife 8, e49485 (2019).

  • 51.

    Tajik, A. et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15, 1287–1296 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Maueroder, C., Chaurio, R. A., Platzer, S., Munoz, L. E. & Berens, C. Model systems for rapid and slow induction of apoptosis obtained by inducible expression of pro-apoptotic proteins. Autoimmunity 46, 329–335 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 53.

    Danke, C. et al. Adjusting transgene expression levels in lymphocytes with a set of inducible promoters. J. Gene Med. 12, 501–515 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 54.

    Friedman, J. R. et al. Er tubules mark sites of mitochondrial division. Science 334, 358–362 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 55.

    Lindenboim, L., Kringel, S., Braun, T., Borner, C. & Stein, R. Bak but not bax is essential for bcl-xs-induced apoptosis. Cell Death Differ. 12, 713–723 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 56.

    Barateau, A. & Buendia, B. In situ detection of interactions between nuclear envelope proteins and partners. Methods Mol. Biol. 1411, 147–158 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *