Apple latent spherical virus structure with stable capsid frame supports quasi-stable protrusions expediting genome release


  • 1.

    Lucas, W. & Gilbertson, R. Plasmodesmata in relation to viral movement within leaf tissues. Ann. Rev. Phytopathol. 32, 287–411 (1994).


    Google Scholar
     

  • 2.

    Carrington, J. C., Kasschau, K. D., Mahajan, S. K. & Schaad, M. C. Cell-to-cell and long-distance transport of viruses in plants. Plant Cell 8, 1669–1681 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Knapp, E., Danyluk, G. M., Achor, D. & Lewandowski, D. J. A bipartite tobacco mosaic virus-defective RNA (dRNA) system to study the role of the N-terminal methyl transferase domain in cell-to-cell movement of dRNAs. Virology 341, 47–58 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Kawakami, S., Watanabe, Y. & Beachy, R. N. Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc. Natl Acad. Sci. USA 101, 6291–6296 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Yoshikawa, N. et al. A movement protein and three capsid proteins are all necessary for the cell-to-cell movement of apple latent spherical cheravirus. Arch. Virol. 151, 837–848 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Kasteel, D. et al. The involvement of cowpea mosaic virus M RNA-encoded proteins in tubule formation. J. Gen. Virol. 74, 1721–1724 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Carvalho, C. M., Wellink, J., Ribeiro, S. G., Goldbach, R. W. & van Lent, J. W. M. The C-terminal region of the movement protein of Cowpea mosaic virus is involved in binding to the large but not to the small coat protein. J. Gen. Virol. 84, 2271–2277 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Isogai, M., Watanabe, K., Uchidate, Y. & Yoshikawa, N. Protein-protein- and protein-RNA-binding properties of the movement protein and VP25 coat protein of Apple latent spherical virus. Virology 352, 178–187 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Wieczorek, A. S. H. Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194, 734–742 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Zell, R. Picornaviridae—the ever-growing virus family. Arch. Virol. 163, 299–317 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Koganezawa, H., Yanase, H., Ochiai, M. & Sakuma, T. An isometric viruslike particle isolated from ruuset ring-diseased apple. Annu. Phytopathological Soc. Jpn. 51, 363 (1985).


    Google Scholar
     

  • 12.

    Ito, T. & Yoshida, K. The etiology of apple russet ring disease. Annu. Phytopathological Soc. Jpn. 63, 487 (1997).


    Google Scholar
     

  • 13.

    Nakamura, K. et al. Seed and pollen transmission of Apple latent spherical virus in apple. J. Gen. Plant Pathol. 77, 48–53 (2011).


    Google Scholar
     

  • 14.

    Kasajima, I., Ito, M., Yamagishi, N. & Yoshikawa, N. Apple latent spherical virus (ALSV) vector as a tool for reverse genetic studies and non-transgenic breeding of a variety of crops. in ‘RNA Technologies’ Series. (eds Rajewsky, N. & Jurga, S. B. J.) 513–536 (Springer International Publishing AG, 2017).

  • 15.

    Yamagishi, N. & Yoshikawa, N. Virus-induced gene silencing in soybean seeds and the emergence stage of soybean plants with apple latent spherical virus vectors. Plant Mol. Biol. 71, 15–24 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Igarashi, A. et al. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386, 407–416 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Yamagishi, N., Kishigami, R. & Yoshikawa, N. Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant-breeding technique with no transmission of genetic modification to the next generation. Plant Biotechnol. J. 12, 60–68 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Li, C., Yamagishi, N., Kasajima, I. & Yoshikawa, N. Virus-induced gene silencing and virus-induced flowering in strawberry (Fragaria × ananassa) using apple latent spherical virus vectors. Hortic. Res. 6, 1–10 (2019).

  • 19.

    Fekih, R., Yamagishi, N. & Yoshikawa, N. Apple latent spherical virus vector-induced flowering for shortening the juvenile phase in Japanese gentian and lisianthus plants. Planta 244, 203–214 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Li, C., Yamagishi, N., Kaido, M. & Yoshikawa, N. Presentation of epitope sequences from foreign viruses on the surface of apple latent spherical virus particles. Virus Res. 190, 118–126 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Taki, A., Yamagishi, N. & Yoshikawa, N. Developement of apple latent spherical virus-based vaccines against three tospoviruses. Virus Res. 176, 251–258 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Tamura, A. et al. Preventive and curative effects of Apple latent spherical virus vectors harboring part of the target virus genome against potyvirus and cucumovirus infections. Virology 446, 314–324 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Satoh, N. et al. Apple latent spherical virus vector as vaccine for the prevention and treatment of mosaic diseases in pea, broad bean, and eustoma plants by bean yellow mosaic virus. Viruses 6, 4242–4257 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Chen, Z. et al. Protein-RNA interactions in an icosahedral virus at 3.0 Å resolution. Science 245, 154–159 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Lecorre, F. et al. The cryo-electron microscopy structure of Broad Bean Stain Virus suggests a common capsid assembly mechanism among comoviruses. Virology 530, 75–84 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Lin, T., Cavarelli, J. & Johnson, J. E. Evidence for assembly-dependent folding of protein and RNA in an icosahedral virus. Virology 314, 26–33 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Lin, T. et al. Structural fingerprinting: subgrouping of comoviruses by structural studies of red clover mottle virus to 2.4-A resolution and comparisons with other comoviruses. J. Virol. 74, 493–504 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Chandrasekar, V. & Johnson, J. E. The structure of tobacco ringspot virus: a link in the evolution of icosahedral capsids in the picornavirus superfamily. Structure 6, 157–171 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Schellenberger, P. et al. Structural insights into viral determinants of nematode mediated Grapevine fanleaf virus transmission. PLoS Pathog. 7, e1002034 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Li, C. et al. Nucleotide sequence and genome organization of Apple latent spherical virus: a new virus classified into the family Comoviridae. J. Gen. Virol. 81, 541–547 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Hamaguchi, T. et al. A new cryo-EM system for single particle analysis. J. Struct. Biol. 207, 40–48 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Hesketh, E. L., Meshcheriakova, Y., Thompson, R. F., Lomonossoff, G. P. & Ranson, N. A. The structures of a naturally empty cowpea mosaic virus particle and its genome-containing counterpart by cryo-electron microscopy. Sci. Rep. 7, 539 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a New HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Holm, L. Benchmarking fold detection by DaliLite v.5. Bioinformatics 35, 5326–5327 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Squires, G. et al. Structure of the Triatoma virus capsid. Acta Crystallogr. Sect. D. Biol. Crystallogr. 69, 1026–1037 (2013).

    CAS 

    Google Scholar
     

  • 37.

    Wang, X. et al. Hepatitis A virus and the origins of picornaviruses. Nature 517, 85–88 (2015).

    CAS 

    Google Scholar
     

  • 38.

    Terwilliger, T. C., Sobolev, O. V., Afonine, P. V. & Adams, P. D. Automated map sharpening by maximization of detail and connectivity. Acta Crystallogr. Sect. D. 74, 545–559 (2018).

    CAS 

    Google Scholar
     

  • 39.

    Lee, L. S. et al. A molecular breadboard: removal and replacement of subunits in a hepatitis B virus capsid. Protein Sci. 26, 2170–2180 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Bostina, M., Levy, H., Filman, D. J. & Hogle, J. M. Poliovirus RNA is released from the capsid near a twofold symmetry axis. J. Virol. 85, 776–783 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Škubnik, K. et al. Structure of deformed wing virus, a major honey bee pathogen. Proc. Natl Acad. Sci. USA 114, 3210–3215 (2017).

    PubMed 

    Google Scholar
     

  • 42.

    Sun, Y. et al. Structural changes of tailless bacteriophage Φx174 during penetration of bacterial cell walls. Proc. Natl Acad. Sci. USA 114, 13708–13713 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Wang, J. C.-Y., Mukhopadhyay, S. & Zlotnick, A. Geometric defects and icosahedral viruses. Viruses 10, 25 (2018).

    PubMed Central 

    Google Scholar
     

  • 44.

    Li, C. et al. Nucleotide sequence and genome organization of apple latent spherical virus: a new virus classified into the family Comoviridae. J. Gen. Virol. 81, 541–547 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Russo, C. J. & Passmore, L. A. Ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).


    Google Scholar
     

  • 47.

    Zhang, J. et al. W. C. JADAS: a customizable automated data acquisition system and its application to ice-embedded single particles. J. Struct. Biol. 165, 1–9 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Yonekura, K., Tetsuya, I. & Maki-Yonekura, S. A new cryo-EM system for electron 3D crystallography by eEFD. J. Struct. Biol. 206, 243–253 (2019).


    Google Scholar
     

  • 49.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of coot. Acta Cryst. D66, 486–501 (2010).

  • 55.

    Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D. 75, 861–877 (2019).

    CAS 

    Google Scholar
     

  • 56.

    Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Hesketh, E. L. et al. Mechanisms of assembly and genome packaging in an RNA virus revealed by high-resolution cryo-EM. Nat. Commun. 6, 10113 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *