Artificial iris performance for smart contact lens vision correction applications


  • 1.

    Chiou, J.-C. et al. A wirelessly powered smart contact lens with reconfigurable wide range and tunable sensitivity sensor readout circuitry. Sensors 17, 108 (2017).


    Google Scholar
     

  • 2.

    Farandos, N. M., Yetisen, A. K., Monteiro, M. J., Lowe, C. R. & Yun, S. H. Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater. 4, 792–810 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Senior, M. Novartis signs up for Google smart lens. Nat. Biotechnol. 32, 856 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    De Smet, H. et al. Curved Guest-Host LCD used a dynamic artificial iris. In Society for Information Display, Mid-Europe Chapter, Spring Meeting 22 (2014).

  • 5.

    De Smet, J. et al. A spherically shaped display for use as an artificial iris. EuroDisplay 2013, 61–64 (2013).


    Google Scholar
     

  • 6.

    Carpi, F., Frediani, G., Turco, S. & De, R. D. Bioinspired tunable lens with muscle-like electroactive elastomers. Adv. Funct. Mater. 21, 4152–4158 (2011).

    CAS 

    Google Scholar
     

  • 7.

    Woltman, S. J., Jay, G. D. & Crawford, G. P. Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 6, 929–938 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    De Roose, F. et al. An active artificial iris controlled by a 25-µW flexible thin-film driver. In IEDM 2016, San Francisco, USA, Dec. 3–7 798–801 (2016).

  • 9.

    Alvarez-Lorenzo, C., Hiratani, H. & Concheiro, A. Contact lenses for drug delivery. Am. J. Drug Deliv. 4, 131–151 (2006).

    CAS 

    Google Scholar
     

  • 10.

    Mansouri, K. & Shaarawy, T. Continuous intraocular pressure monitoring with a wireless ocular telemetry sensor: initial clinical experience in patients with open angle glaucoma. Br. J. Ophthalmol. 95, 627–629 (2011).

    PubMed 

    Google Scholar
     

  • 11.

    Leonardi, M., Pitchon, E. M., Bertsch, A., Renaud, P. & Mermoud, A. Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 87, 433–437 (2009).

    PubMed 

    Google Scholar
     

  • 12.

    Ho, H., Saeedi, E., Kim, S. S., Shen, T. T. & Parviz, B. A. Contact lens with integrated inorganic semiconductor devices. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 403–406 (2008). https://doi.org/10.1109/MEMSYS.2008.4443678

  • 13.

    Vásquez Quintero, A., Verplancke, R., De Smet, H. & Vanfleteren, J. Stretchable electronic platform for soft and smart contact lens applications. Adv. Mater. Technol. 2, 1–10 (2017).


    Google Scholar
     

  • 14.

    De Rossi, D. Electronic textiles: a logical step. Nat. Mater. 6, 328–329 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 15.

    Someya, T. Flexible electronics: tiny lamps to illuminate the body. Nat. Mater. 9, 879–880 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Stoppa, M. & Chiolerio, A. Wearable electronics and smart textiles: a critical review. Sensors 14, 11957–11992 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Ahn, J.-H. et al. Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications. IEEE Trans. Compon. Hybrids Manuf. Technol. 104, 1350 (2009).


    Google Scholar
     

  • 18.

    Kim, J. et al. Miniaturized flexible electronic systems with wireless power and near-field communication capabilities. Adv. Funct. Mater. 25, 4761–4767 (2015).

    CAS 

    Google Scholar
     

  • 19.

    Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 20.

    Lin, H.-C., Chen, M.-S. & Lin, Y.-H. A review of electrically tunable focusing liquid crystal lenses. Trans. Electr. Electron. Mater. 12, 234–240 (2011).


    Google Scholar
     

  • 21.

    Beeckman, J. et al. Multi-electrode tunable liquid crystal lenses with one lithography step. Opt. Lett. 43, 271–274 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Algorri, J. F. et al. Tunable liquid crystal multifocal microlens array. Sci. Rep. 7, 17318 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Bailey, J., Morgan, P. B., Gleeson, H. F. & Jones, J. C. Switchable liquid crystal contact lenses for the correction of presbyopia. Crystals 8, 1–29 (2018).


    Google Scholar
     

  • 24.

    De Smet, J. et al. Progress toward a liquid crystal contact lens display. J. Syst. Inf. Disp. 21, 399–406 (2014).


    Google Scholar
     

  • 25.

    Vanhaverbeke, C., Verplancke, R., De Smet, J., Cuypers, D. & De Smet, H. Microfabrication of a spherically curved liquid crystal display enabling the integration in a smart contact lens. Displays 49, 16–25 (2017).

    CAS 

    Google Scholar
     

  • 26.

    Campbell, F. W. & Gregory, A. H. Effect of size of pupil on visual acuity. Nature 187, 1121–1123 (1960).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Tabernero, J., Schwarz, C. A., Fernández, E. J. M. & Artal, P. Binocular visual simulation of a corneal inlay to increase depth of focus. Invest. Ophthalmol. Vis. Sci. 52(8), 5273–5277 (2011).

    PubMed 

    Google Scholar
     

  • 28.

    Harb, W. G., Chamoun, N. G. & Harb, G. W. KAMRA inlay implantation for presbyopia compensation: a retrospective evaluation of patient satisfaction and subjective vision 12-month postoperative. Middle East Afr. J. Ophthalmol. 26, 65–70 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Ylmaz, ÖF. et al. Intracorneal inlay to correct presbyopia: long-term results. J. Cataract. Refract. Surg. 37, 1275–1281 (2011).


    Google Scholar
     

  • 30.

    Furlan, W. D. et al. Diffractive corneal inlay for presbyopia. J. Biophotonics 10, 1110–1114 (2017).

    PubMed 

    Google Scholar
     

  • 31.

    Kipp, L. et al. Sharper images by focusing soft X-rays with photon sieves. Nature 414, 184–188 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Montagud-Martínez, D., Ferrando, V., Monsoriu, J. A. & Furlan, W. D. Optical evaluation of new designs of multifocal diffractive corneal inlays. J. Ophthalmol. 2019, 6 (2019).


    Google Scholar
     

  • 33.

    Pullum, K. W. & Stapleton, F. J. Scleral lens induced corneal swelling: what is the effect of varying Dk and lens thickness?. CLAO J. 23, 259–263 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Gholami, S., Reus, N. J. & van den Berg, T. J. T. P. The significance of changes in pupil size during straylight measurement and with varying environmental illuminance. J. Ophthalmol. 11, 167–173 (2018).


    Google Scholar
     

  • 35.

    Pamplona, V., Oliveira, M. & Baranoski, G. Photorealistic models for pupil light reflex and iridal pattern deformation. ACM Trans. Graph. 28, 12 (2009).


    Google Scholar
     

  • 36.

    Ellis, C. J. K. The pupillary light reflex in normal subjects. Br. J. Ophthalmol. 65, 754–759 (1981).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Davis, C. Q., Kraszewska, O. & Manning, C. Constant luminance (cd·s/m2) versus constant retinal illuminance (Td·s) stimulation in flicker ERGs. Doc. Ophthalmol. 134, 75–87 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    van der Worp, E. et al. Modern scleral contact lenses: a review. Contact Lens Anterior Eye 37, 240–250 (2014).

    PubMed 

    Google Scholar
     

  • 39.

    van der Worp, E. A Guide to Scleral Lens Fitting (Pacific University Libraries, Forest Grove, 2010).


    Google Scholar
     

  • 40.

    Gemoules, G. A novel method of fitting scleral lenses using high resolution optical coherence tomography. Eye Contact Lens 34, 80–83 (2008).

    PubMed 

    Google Scholar
     

  • 41.

    Fadel, D. & Barnett, M. Scleral lenses: prepare for landing. Contact Lens Spectr. 32, 42–43 (2017).


    Google Scholar
     

  • 42.

    Bennett, E. S. Contemporary scleral lenses: theory and application. Ophthalmol. Vis. Sci. 95, 687 (2018).


    Google Scholar
     

  • 43.

    Visser, E.-S., Visser, R. & Van Lier, H. J. J. Advantages of toric scleral lenses. Optom. Vis. Sci. 83, 233–236 (2006).

    PubMed 

    Google Scholar
     

  • 44.

    Holden, B. A. & Mertz, G. W. Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Investig. Ophthalmol. Vis. Sci. 25, 1161–1167 (1984).

    CAS 

    Google Scholar
     

  • 45.

    Compañ, V. et al. Oxygen diffusion and edema with modern scleral rigid gas permeable contact lenses. Investig. Ophthalmol. Vis. Sci. 55, 6421–6429 (2014).


    Google Scholar
     

  • 46.

    Vincent, S. J. & Collins, M. J. A topographical method to quantify scleral contact lens decentration. Contact Lens Anterior Eye 42, 462–466 (2019).

    PubMed 

    Google Scholar
     

  • 47.

    Zhang, X., Ye, M., Bradley, A. & Thibos, L. Apodization by the Stiles–Crawford effect moderates the visual impact of retinal image defocus. J. Opt. Soc. Am. A 16, 812–820 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Atchison, D. A., Scott, D. H., Strang, N. C. & Artal, P. Influence of Stiles–Crawford apodization on visual acuity. J. Opt. Soc. Am. A 19, 1073–1083 (2002).

    ADS 

    Google Scholar
     

  • 49.

    Zheleznyak, L., Jung, H. & Yoon, G. Impact of Pupil transmission apodization on presbyopic through-focus visual performance with spherical aberration. Invest. Ophthalmol. Vis. Sci. 55, 70–77 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Xu, R., Wang, H., Thibos, L. N. & Bradley, A. Interaction of aberrations, diffraction, and quantal fluctuations determine the impact of pupil size on visual quality. J. Opt. Soc. Am. A 34, 481–492 (2017).

    ADS 

    Google Scholar
     

  • 51.

    Vásquez Quintero, A., Delcour, S., Verplancke, R., Vanfleteren, J. & De Smet, H. Smart contact lens platform with a deformed active artificial iris. In Proceedings o International Display Workshop IDW – Fukuoka, Japan, December 9–11 (2017).

  • 52.

    Giasson, C. J., Morency, J., Melillo, M. & Michaud, L. Oxygen tension beneath scleral lenses of different clearances. Optom. Vis. Sci. 94, 466–475 (2017).

    PubMed 

    Google Scholar
     

  • 53.

    Benjamin, W. J. & Group, T. D. R. S. Revised oxygen permeability (Dk) of reference materials. Invest. Ophthalmol. Vis. Sci. 47, 97 (2006).


    Google Scholar
     

  • 54.

    Fatt, I. Oxygen-transmissibility considerations for a hard-soft contact-lens combination. Am. J. Optom. Physiol. Opt. 54, 666–672 (1977).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Michaud, L., van der Worp, E., Brazeau, D., Warde, R. & Giasson, C. J. Predicting estimates of oxygen transmissibility for scleral lenses. Contact Lens Anterior Eye 35, 266–271 (2012).

    PubMed 

    Google Scholar
     

  • 56.

    Matsunaga, K., Sato, K., Tajima, M. & Yoshida, Y. Gas permeability of thermoplastic polyurethane elastomers. Polym. J. 37, 413–417 (2005).

    CAS 

    Google Scholar
     

  • 57.

    Pérez-Merino, P. et al. Ocular and optical coherence tomography—based corneal aberrometry in keratoconic eyes treated by intracorneal ring segments. Am. J. Ophthalmol. 157, 116-127.e1 (2014).

    PubMed 

    Google Scholar
     

  • 58.

    Tseng, K. S. & Lo, Y. L. Effect of sputtering parameters on optical and electrical properties of ITO films on PET substrates. Appl. Surf. Sci. 285, 157–166 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Faraj, M. G., Ibrahim, K. & Ali, M. K. M. PET as a plastic substrate for the flexible optoelectronic applications. Optoelectron. Adv. Mater. Rapid Commun. 5, 879–882 (2011).

    CAS 

    Google Scholar
     

  • 60.

    Alemu, D., Wei, H. Y., Ho, K. C. & Chu, C. W. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ. Sci. 5, 9662–9671 (2012).

    CAS 

    Google Scholar
     

  • 61.

    Cheng, X., Thibos, L. N. & Bradley, A. Estimating visual quality from wavefront aberration measurements. J. Refract. Surg. 19(5), S579–S584 (2003).

    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *