Atomic-resolution structure of HIV-1 capsid tubes by magic-angle spinning NMR


  • 1.

    Ganser, B. K., Li, S., Klishko, V. Y., Finch, J. T. & Sundquist, W. I. Assembly and analysis of conical models for the HIV-1 core. Science 283, 80–83 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Briggs, J. A. et al. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol. 11, 672–675 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Pornillos, O., Ganser-Pornillos, B. K. & Yeager, M. Atomic-level modelling of the HIV capsid. Nature 469, 424–428 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Zhao, G. P. et al. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497, 643–646 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Campbell, E. M. & Hope, T. J. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat. Rev. Microbiol. 13, 471–483 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Ambrose, Z. & Aiken, C. HIV-1 uncoating: connection to nuclear entry and regulation by host proteins. Virology 454–455, 371–379 (2014).

    PubMed 

    Google Scholar
     

  • 7.

    Luban, J., Bossolt, K. L., Franke, E. K., Kalpana, G. V. & Goff, S. P. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067–1078 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Goujon, C. et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502, 559–562 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Liu, Z. et al. The interferon-inducible MxB protein inhibits HIV-1 infection. Cell Host Microbe 14, 398–410 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Stremlau, M. et al. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Lukic, Z., Dharan, A., Fricke, T., Diaz-Griffero, F. & Campbell, E. M. HIV-1 uncoating is facilitated by dynein and kinesin 1. J. Virol. 88, 13613–13625 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Malikov, V. et al. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nat. Commun. 6, 6660 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Brass, A. L. et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319, 921–926 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Konig, R. et al. Global analysis of host–pathogen interactions that regulate early-stage HIV-1 replication. Cell 135, 49–60 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Ocwieja, K. E. et al. HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein RanBP2. PLoS Pathog. 7, e1001313 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Rasaiyaah, J. et al. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503, 402–405 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Perilla, J. R. & Gronenborn, A. M. Molecular architecture of the retroviral capsid. Trends Biochem. Sci. 41, 410–420 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Ganser-Pornillos, B. K., Cheng, A. & Yeager, M. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 131, 70–79 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    López, C. S. et al. Determinants of the HIV-1 core assembly pathway. Virology 417, 137–146 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Gamble, T. R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Byeon, I. J. L. et al. Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139, 780–790 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Gres, A. T. et al. X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science 349, 99–103 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Jacques, D. A. et al. HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. Nature 536, 349–353 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Han, Y. et al. Magic angle spinning NMR reveals sequence-dependent structural plasticity, dynamics and the spacer peptide 1 conformation in HIV-1 capsid protein assemblies. J. Am. Chem. Soc. 135, 17793–17803 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Lu, M. et al. Dynamic allostery governs cyclophilin A-HIV capsid interplay. Proc. Natl Acad. Sci. USA 112, 14617–14622 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Mattei, S., Glass, B., Hagen, W. J., Krausslich, H. G. & Briggs, J. A. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 354, 1434–1437 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Russell, R. W. et al. Accuracy and precision of protein structures determined by magic angle spinning NMR spectroscopy: for some ‘with a little help from a friend’. J. Biomol. NMR 73, 333–346 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Gupta, R. et al. Dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance combined with molecular dynamics simulations permits detection of order and disorder in viral assemblies. J. Phys. Chem. B 123, 5048–5058 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Byeon, I. J. L. et al. Motions on the millisecond time scale and multiple conformations of HIV-1 capsid protein: implications for structural polymorphism of CA assemblies. J. Am. Chem. Soc. 134, 6455–6466 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Zhang, H. et al. HIV-1 capsid function is regulated by dynamics: quantitative atomic-resolution insights by integrating magic-angle-spinning NMR, QM/MM and MD. J. Am. Chem. Soc. 138, 14066–14075 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Campos-Olivas, R. & Summers, M. F. Backbone dynamics of the N-terminal domain of the HIV-1 capsid protein and comparison with the G94D mutant conferring cyclosporin resistance/dependence. Biochemistry 38, 10262–10271 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Fritz, M. et al. Determination of accurate backbone chemical shift tensors in microcrystalline proteins by integrating MAS NMR and QM/MM. Phys. Chem. Chem. Phys. 20, 9543–9553 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Dick, R. A. et al. Inositol phosphates are assembly co-factors for HIV-1. Nature 560, 509–512 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Bayro, M. J. & Tycko, R. Structure of the dimerization interface in the mature HIV-1 capsid protein lattice from solid state NMR of tubular assemblies. J. Am. Chem. Soc. 138, 8538–8546 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Han, Y. et al. Solid-state NMR studies of HIV-1 capsid protein assemblies. J. Am. Chem. Soc. 132, 1976–1987 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Hou, G. J., Yan, S., Trebosc, J., Amoureux, J. P. & Polenova, T. Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. J. Magn. Reson. 232, 18–30 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Brauniger, T., Wormald, P. & Hodgkinson, P. Improved proton decoupling in NMR spectroscopy of crystalline solids using the SPINAL-64 sequence. Monatsh. Chem. 133, 1549–1554 (2002).


    Google Scholar
     

  • 38.

    Fung, B. M., Khitrin, A. K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Goddard, T. D. & Kneller, D. G. SPARKY 3 (Univ. California, 2004).

  • 41.

    Stevens, T. J. et al. A software framework for analysing solid-state MAS NMR data. J. Biomol. NMR 51, 437–447 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Schwieters, C. D., Kuszewski, J. J. & Clore, G. M. Using Xplor-NIH for NMR molecular structure determination. Prog. Nucl. Magn. Reson. Spectrosc. 48, 47–62 (2006).

    CAS 

    Google Scholar
     

  • 44.

    Schwieters, C. D., Bermejo, G. A. & Clore, G. M. Xplor-NIH for molecular structure determination from NMR and other data sources. Protein Sci. 27, 26–40 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Bermejo, G. A., Clore, G. M. & Schwieters, C. D. Smooth statistical torsion angle potential derived from a large conformational database via adaptive kernel density estimation improves the quality of NMR protein structures. Protein Sci. 21, 1824–1836 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Schwieters, C. D. & Clore, G. M. A pseudopotential for improving the packing of ellipsoidal protein structures determined from NMR data. J. Phys. Chem. B 112, 6070–6073 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Schwieters, C. D., Bermejo, G. A. & Clore, G. M. A three-dimensional potential of mean force to improve backbone and sidechain hydrogen bond geometry in Xplor-NIH protein structure determination. Protein Sci. 29, 100–110 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Shen, Y. & Bax, A. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N. Methods Mol. Biol. 1260, 17–32 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Perilla, J. R. et al. CryoEM structure refinement by integrating NMR chemical shifts with molecular dynamics simulations. J. Phys. Chem. B 121, 3853–3863 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Gong, Z., Schwieters, C. D. & Tang, C. Conjoined use of EM and NMR in RNA structure refinement. PLoS ONE https://doi.org/10.1371/journal.pone.0120445 (2015).

  • 53.

    Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    PubMed 

    Google Scholar
     

  • 55.

    Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M. & Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M. & Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J. Chem. Theory Comput. 7, 2284–2295 (2011).

    PubMed 

    Google Scholar
     

  • 57.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Gullingsrud, J., Saam, J. & Phillips, J. psfgen User’s Guide (Theoretical and Computational Biophysics Group, University of Illinois and Beckman Institute, 2006).

  • 59.

    Stone, J. E., Vandivort, K. L. & Schulten, K. in Advances in Visual Computing. ISVC 2011. Lecture Notes in Computer Science in Lecture Notes in Computer Science Vol. 6939 (eds. Bebis, G. et al.) 1–12 (2011).

  • 60.

    Fiorin, G., Klein, M. L. & Hénin, J. Using collective variables to drive molecular dynamics simulations. Mol. Phys. 111, 3345–3362 (2013).

    CAS 

    Google Scholar
     

  • 61.

    Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    CAS 

    Google Scholar
     

  • 62.

    Essmann, U. et al. A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    CAS 

    Google Scholar
     

  • 63.

    Skeel, R. D. & Biesiadecki, J. J. Symplectic integration with variable stepsize. Ann. Numer. Math. 1, 191–198 (1994).


    Google Scholar
     

  • 64.

    Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).


    Google Scholar
     

  • 65.

    Bussi, G., Zykova-Timan, T. & Parrinello, M. Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J. Chem. Phys. 130, 074101 (2009).

    PubMed 

    Google Scholar
     

  • 66.

    Andersen, H. C. Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983).

    CAS 

    Google Scholar
     

  • 67.

    Kräutler, V., van Gunsteren, W. F. & Hünenberger, P. H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 22, 501–508 (2001).


    Google Scholar
     

  • 68.

    The PyMOL Molecular Graphics System v.2.0 (Schrödinger, 2000).

  • 69.

    Stone, J. E. An Efficient Library for Parallel Ray Tracing and Animation. Masters thesis, Univ. Missouri-Rolla (1998).

  • 70.

    Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *