Attosecond electronic timing with rising edges of photocurrent pulses


  • 1.

    Kim, J. & Song, Y. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics 8, 465–540 (2016).

    ADS 

    Google Scholar
     

  • 2.

    Diddams, S. A. The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51–B62 (2010).

    CAS 

    Google Scholar
     

  • 3.

    Del’Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 4.

    Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Benedick, A. J., Fujimoto, J. G. & Kärtner, F. X. Optical flywheels with attosecond jitter. Nat. Photon. 6, 97 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Kim, T. K. et al. Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers. Opt. Lett. 36, 4443–4445 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Song, Y., Kim, C., Jung, K., Kim, H. & Kim, J. Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime. Opt. Express 19, 14518–14525 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Ivanov, E. N., McFerran, J. J., Diddams, S. A. & Hollberg, L. Noise properties of microwave signals synthesized with femtosecond lasers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 736–745 (2007).

    PubMed 

    Google Scholar
     

  • 11.

    Jiang, H. F., Taylor, J., Quinlan, F., Fortier, T. & Diddams, S. A. Noise floor reduction of an Er:fiber laser-based photonic microwave generator. IEEE Photon. J. 3, 1004–1012 (2011).

    ADS 

    Google Scholar
     

  • 12.

    Wu, K. et al. Characterization of the excess noise conversion from optical relative intensity noise in the photodetection of mode-locked lasers for microwave signal synthesis. J. Lightwave Technol. 29, 3622–3631 (2011).

    ADS 

    Google Scholar
     

  • 13.

    Zhang, W. et al. Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation. Appl. Phys. B 106, 301–308 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Haboucha, A. et al. Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation. Opt. Lett. 36, 3654–3656 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Beling, A., Xie, X. & Campbell, J. C. High-power, high-linearity photodiodes. Optica 3, 328–338 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Xie, X. J., Zang, J. Z., Beling, A. & Campbell, J. Characterization of amplitude noise to phase noise conversion in charge-compensated modified unitravelling carrier photodiodes. J. Lightwave Technol. 35, 1718–1724 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Bouchand, R., Nicolodi, D., Xie, X. P., Alexandre, C. & Le Coq, Y. Accurate control of optoelectronic amplitude to phase noise conversion in photodetection of ultra-fast optical pulses. Opt. Express 25, 12268–12281 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Fortier, T. M. et al. Photonic microwave generation with high-power photodiodes. Opt. Lett. 38, 1712–1714 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 19.

    Baynes, F. N. et al. Attosecond timing in optical-to-electrical conversion. Optica 2, 141–146 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Quinlan, F. et al. Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains. Nat. Photon. 7, 290–293 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Diddams, S. A. et al. Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb. Opt. Express 17, 3331–3340 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Hu, Y. et al. Computational study of amplitude-to-phase conversion in a modified unitraveling carrier photodetector. IEEE Photon. J. 9, 1–11 (2017).


    Google Scholar
     

  • 23.

    Davila-Rodriguez, J. et al. Optimizing the linearity in high-speed photodiodes. Opt. Express 26, 30532–30545 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M. & Knox, W. Femtosecond charge transport in polar semiconductors. Phys. Rev. Lett. 82, 5140 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M. & Knox, W. Femtosecond high-field transport in compound semiconductors. Phys. Rev. B 61, 16642 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Sun, C.-K., Tan, I.-H. & Bowers, J. E. Ultrafast transport dynamics of pin photodetectors under high-power illumination. IEEE Photon. Tech. Lett. 10, 135–137 (1998).

    ADS 

    Google Scholar
     

  • 27.

    Jung, K. & Kim, J. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers. Opt. Lett. 37, 2958–2960 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Jeon, C.-G., Na, Y., Lee, B.-W. & Kim, J. Simple-structured, subfemtosecond-resolution optical-microwave phase detector. Opt. Lett. 43, 3997–4000 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Valley, G. C. Photonic analog-to-digital converters. Opt. Express 15, 1955–1982 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 30.

    Nathawad, L. Y., Urata, R., Wooley, B. A. & Miller, D. A. A 40-GHz-bandwidth, 4-bit, time-interleaved A/D converter using photoconductive sampling. IEEE J. Solid-State Circuits 38, 2021–2030 (2003).

    ADS 

    Google Scholar
     

  • 31.

    Ramkaj, A. et al. A 5GS/s 158.6 mW 12b passive-sampling 8×-interleaved hybrid ADC with 9.4 ENOB and 160.5 dB FoM S in 28 nm CMOS. In Proc. IEEE International Solid-State Circuits Conference (ISSCC) (eds Anderson, J. H. et al.) 62–64 (IEEE, 2019).

  • 32.

    Kim, J. et al. A 112 Gb/s PAM-4 56 Gb/s NRZ reconfigurable transmitter with three-tap FFT in 10-nm Fin FET. IEEE J. Solid-State Circuits 54, 29–42 (2018).

    ADS 

    Google Scholar
     

  • 33.

    Cevrero, A. et al. A 100 Gb/s 1.1pJ/b PAM-4 RX with dual-mode 1-Tap PAM-4/3-Tap NRZ speculative DFE in 14 nm CMOS FinFET. In Proc. IEEE International Solid-State Circuits Conference (ISSCC) (eds Anderson, J. H. et al.) 112–114 (IEEE, 2019).

  • 34.

    Sadhu, B. et al. A 28 GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication. In Proc. IEEE International Solid-State Circuits Conference (ISSCC) (eds Anderson, J. H. et al.) 128–129 (IEEE, 2017).

  • 35.

    Debaes, C. et al. Receiver-less optical clock injection for clock distribution networks. IEEE J. Sel. Top. Quantum Electron. 9, 400–409 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Krune, E., Jamshidi, K., Voigt, K., Zimmermann, L. & Petermann, K. Jitter analysis of optical clock distribution networks in silicon photonics. J. Lightwave Technol. 32, 3776–3783 (2014).

    ADS 

    Google Scholar
     

  • 37.

    Gonzalez, C. et al. POWER9™: A processor family optimized for cognitive computing with 25 Gb/s accelerator links and 16 Gb/s PCIe Gen4. In Proc. IEEE International Solid-State Circuits Conference (ISSCC) (eds Anderson, J. H. et al.) 50–51 (IEEE, 2017).

  • 38.

    Kim, J. et al. A 76fsrms jitter and –40dBc integrated-phase-noise 28-to-31GHz frequency synthesizer based on digital sub-sampling PLL using optimally spaced voltage comparators and background loop-gain optimization. In Proc. IEEE International Solid-State Circuits Conference (ISSCC) 258–260 (IEEE, 2019).

  • 39.

    Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nat. Photon. 4, 527 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    DeRose, C. T. et al. Ultra compact 45 GHz CMOS compatible germanium waveguide photodiode with low dark current. Opt. Express 19, 24897–24904 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Taylor, J. et al. Characterization of power-to-phase conversion in high-speed P-I-N photodiodes. IEEE Photon. J. 3, 140–151 (2011).

    ADS 

    Google Scholar
     

  • 42.

    Williams, K. J., Esman, R. D. & Dagenais, M. Nonlinearities in pin microwave photodetectors. J. Lightwave Technol. 14, 84–96 (1996).

    ADS 

    Google Scholar
     

  • 43.

    Xie, X. et al. Ultra-short optical pulses leading to ultra-stable photonic microwave generation. In Proc. Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS) 781–783 (IEEE, 2017).

  • 44.

    Sun, W. L. et al. Broadband noise limit in the photodetection of ultralow jitter optical pulses. Phys. Rev. Lett. 113, 203901 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 45.

    Wang, G. et al. A time-delay equivalent-circuit model of ultrafast pin photodiodes. IEEE Trans. Microw. Theory Technol. 51, 1227–1233 (2003).

    ADS 

    Google Scholar
     

  • 46.

    Zhou, G. & Runge, P. Nonlinearities of high-speed pin photodiodes and MUTC photodiodes. IEEE Trans. Microw. Theory Technol. 65, 2063–2072 (2017).

    ADS 

    Google Scholar
     

  • 47.

    Rouvalis, E. et al. High-power and high-linearity photodetector modules for microwave photonic applications. J. Lightwave Technol. 32, 3810–3816 (2014).

    ADS 

    Google Scholar
     

  • 48.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Pfeifle, J. et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photon. 8, 375–380 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Riek, C., Seletskiy, D. V. & Leitenstorfer, A. Femtosecond measurements of electric fields: from classical amplitudes to quantum fluctuations. Eur. J. Phys. 38, 024003 (2017).


    Google Scholar
     

  • 51.

    Böhm, K., Russer, P., Weidel, E. & Ulrich, R. Low-noise fiber-optic rotation sensing. Opt. Lett. 6, 64–66 (1981).

    ADS 
    PubMed 

    Google Scholar
     

  • 52.

    Dennis, M., Duling, I. & Burns, W. Inherently bias drift free amplitude modulator. Electron. Lett. 32, 547–548 (1996).

    ADS 

    Google Scholar
     

  • 53.

    Kim, J., Chen, J., Cox, J. & Kärtner, F. X. Attosecond-resolution timing jitter characterization of free-running mode-locked lasers. Opt. Lett. 32, 3519–3521 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 54.

    Li, J., Xiong, B., Sun, C., Miao, D. & Luo, Y. Analysis of frequency response of high power MUTC photodiodes based on photocurrent-dependent equivalent circuit model. Opt. Express 23, 21615–21623 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *