Auditory cognition and perception of action video game players


  • 1.

    Moore, D. R. et al. Relation between speech-in-noise threshold, hearing loss and cognition from 40–69 years of age. PLoS ONE 9, e107720 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Motlagh-Zadeh, L. et al. Extended high-frequency hearing enhances speech perception in noise. Proc. Natl. Acad. Sci. https://doi.org/10.1073/PNAS.1903315116 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Saunders, G. H. et al. A randomized control trial: supplementing hearing aid use with listening and communication enhancement (LACE) auditory training. Ear Hear. 37, 381–396 (2016).

    PubMed 

    Google Scholar
     

  • 4.

    Ferguson, M. & Henshaw, H. How does auditory training work? Joined-up thinking and listening. Semin. Hear. 36, 237–249 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Ferguson, M. A., Henshaw, H., Clark, D. P. A. & Moore, D. R. Benefits of phoneme discrimination training in a randomized controlled trial of 50-to 74-year-olds with mild hearing loss. Ear Hear. 35, e110 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Moore, D. R., Rosenberg, J. F. & Coleman, J. S. Discrimination training of phonemic contrasts enhances phonological processing in mainstream school children. Brain Lang. 94, 72–85 (2005).

    PubMed 

    Google Scholar
     

  • 7.

    Bediou, B. et al. Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychol. Bull. 144, 77 (2018).

    PubMed 

    Google Scholar
     

  • 8.

    Green, C. S. & Bavelier, D. Action video game modifies visual selective attention. Nature 423, 534–537 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Green, C. & Bavelier, D. Action video game experience alters the spatial resolution of vision. Psychol. Sci. 18, 88–94 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Green, C. S. & Bavelier, D. Effect of action video games on the spatial distribution of visuospatial attention. J. Exp. Psychol. Hum. Percept. Perform. 32, 1465–1478 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Feng, J., Spence, I. & Pratt, J. Playing an action video game reduces gender differences in spatial cognition. Psychol. Sci. 18, 850–855 (2007).

    PubMed 

    Google Scholar
     

  • 12.

    Li, R., Polat, U., Makous, W. & Bavelier, D. Enhancing the contrast sensitivity function through action video game training. Nat. Neurosci. 12, 549 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Colzato, L. S., Van Leeuwen, P. J. A., Van Den Wildenberg, W. & Hommel, B. DOOM’d to switch: superior cognitive flexibility in players of first person shooter games. Front. Psychol. 1, 8 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Torner, H. P., Carbonell, X. & Castejón, M. A comparative analysis of the processing speed between video game players and non-players. Aloma Rev. Psicol. Ciènc. Educ. Esport 37 (2019).

  • 15.

    Schubert, T. et al. Video game experience and its influence on visual attention parameters: an investigation using the framework of the Theory of Visual Attention (TVA). Acta Psychol. (Amst.) 157, 200–214 (2015).


    Google Scholar
     

  • 16.

    Entertainment Software Association. Essential facts about the computer and video game industry (2015).

  • 17.

    Pylyshyn, Z. W. & Storm, R. W. Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat. Vis. 3, 179–197 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Dobrowolski, P., Hanusz, K., Sobczyk, B., Skorko, M. & Wiatrow, A. Cognitive enhancement in video game players: the role of video game genre. Comput. Hum. Behav. 44, 59–63 (2015).


    Google Scholar
     

  • 19.

    McDermott, A. F., Bavelier, D. & Green, C. S. Memory abilities in action video game players. Comput. Hum. Behav. 34, 69–78 (2014).


    Google Scholar
     

  • 20.

    Oei, A. C. & Patterson, M. D. Enhancing cognition with video games: a multiple game training study. PLoS ONE 8, e58546 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Trick, L. M., Jaspers-Fayer, F. & Sethi, N. Multiple-object tracking in children: the ‘Catch the Spies’ task. Cogn. Dev. 20, 373–387 (2005).


    Google Scholar
     

  • 22.

    Palaus, M., Marron, E. M., Viejo-Sobera, R. & Redolar-Ripoll, D. Neural basis of video gaming: a systematic review. Front. Hum. Neurosci. 11, 259–276 (2017).


    Google Scholar
     

  • 23.

    Bavelier, D. & Green, C. S. Enhancing attentional control: lessons from action video games. Neuron 104, 147–163 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Bavelier, D., Green, C. S., Pouget, A. & Schrater, P. Brain plasticity through the life span: learning to learn and action video games. Annu. Rev. Neurosci. 35, 391–416 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Zhang, Y.-X., Tang, D.-L., Moore, D. R. & Amitay, S. Supramodal enhancement of auditory perceptual and cognitive learning by video game playing. Front. Psychol. 8, 1086 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Green, C. S., Pouget, A. & Bavelier, D. Improved probabilistic inference as a general learning mechanism with action video games. Curr. Biol. 20, 1573–1579 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Brungart, D. S. Informational and energetic masking effects in the perception of two simultaneous talkers. J. Acoust. Soc. Am. 109, 1101–1109 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Shinn-Cunningham, B. G. Object-based auditory and visual attention. Trends Cogn. Sci. 12, 182–186 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Green, C. S. et al. Playing some video games but not others is related to cognitive abilities: a critique of Unsworth et al. (2015). Psychol. Sci. 28, 679–682 (2017).

    PubMed 

    Google Scholar
     

  • 30.

    Dale, G. & Green, C. S. Associations between avid action and real-time strategy game play and cognitive performance: a pilot study. J. Cogn. Enhanc. 1, 295–317 (2017).


    Google Scholar
     

  • 31.

    Kollins, S. H. et al. A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): a randomised controlled trial. Lancet Digit. Health 2, e168–e178 (2020).


    Google Scholar
     

  • 32.

    Stewart, H. J. & Amitay, S. Modality-specificity of selective attention networks. Front. Psychol. 6, 1826 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Zhang, Y.-X., Barry, J. G., Moore, D. R. & Amitay, S. A new Test of Attention in Listening (TAIL) predicts auditory performance. PLoS ONE 7, e53502–e53502 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Bench, J., Kowal, A. & Bamford, J. The BKB (Bamford–Kowal–Bench) sentence lists for partially-hearing children’. Br. J. Audiol. 13, 108–112 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Brungart, D. S., Sheffield, B. M. & Kubli, L. R. Development of a test battery for evaluating speech perception in complex listening environments. J. Acoust. Soc. Am. 136, 777–790 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • 36.

    Cameron, S., Glyde, H. & Dillon, H. Listening in Spatialized Noise—Sentences Test (LiSN-S): normative and retest reliability data for adolescents and adults up to 60 years of age. J. Am. Acad. Audiol. 22, 697–709 (2011).

    PubMed 

    Google Scholar
     

  • 37.

    Cameron, S. & Dillon, H. Development of the listening in spatialized noise-sentences test (LISN-S). Ear Hear. 28, 196–211 (2007).

    PubMed 

    Google Scholar
     

  • 38.

    Whitton, J. P., Hancock, K. E., Shannon, J. M. & Polley, D. B. Audiomotor perceptual training enhances speech intelligibility in background noise. Curr. Biol. 27, 3237-3247.e6 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Dale, G., Kattner, F., Bavelier, D. & Green, C. S. Cognitive abilities of action video game and role-playing video game players: data from a massive open online course. Psychol. Pop. Media Cult. https://doi.org/10.1037/ppm0000237 (2019).

    Article 

    Google Scholar
     

  • 40.

    Dale, G. & Green, C. S. The changing face of video games and video gamers: future directions in the scientific study of video game play and cognitive performance. J. Cogn. Enhanc. 1, 280–294 (2017).


    Google Scholar
     

  • 41.

    Strait, D. L., Parbery-Clark, A., Hittner, E. & Kraus, N. Musical training during early childhood enhances the neural encoding of speech in noise. Brain Lang. 123, 191–201 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Zendel, B. R. & Alain, C. Concurrent sound segregation is enhanced in musicians. J. Cogn. Neurosci. 21, 1488–1498 (2009).

    PubMed 

    Google Scholar
     

  • 43.

    Parbery-Clark, A., Skoe, E. & Kraus, N. Musical experience limits the degradative effects of background noise on the neural processing of sound. J. Neurosci. 29, 14100–14107 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Mankel, K. & Bidelman, G. M. Inherent auditory skills rather than formal music training shape the neural encoding of speech. Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.1811793115 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Ruggles, D. R., Freyman, R. L. & Oxenham, A. J. Influence of musical training on understanding voiced and whispered speech in noise. PLoS ONE 9, e86980 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Strait, D. L. & Kraus, N. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hear. Res. 308, 109–121 (2014).

    PubMed 

    Google Scholar
     

  • 47.

    Kahn, A. S., Ratan, R. & Williams, D. Why we distort in self-report: predictors of self-report errors in video game play. J. Comput. Mediat. Commun. 19, 1010–1023 (2014).


    Google Scholar
     

  • 48.

    Room, R. Measuring alcohol consumption in the United States. In Research Advances in Alcohol and Drug Problems 39–80 (Springer, 1990).

  • 49.

    Shakeshaft, A. P., Bowman, J. A. & Sanson-Fisher, R. W. A comparison of two retrospective measures of weekly alcohol consumption: diary and quantity/frequency index. Alcohol Alcohol 34, 636–645 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    British Society of Audiology. Pure-tone air-conduction and bone-conduction threshold audiometry with and without masking (2011).

  • 51.

    Zobay, O. et al. A new software implementation of the Test of Attention in Listening. In BSA Basic Auditory Science meeting (2016).

  • 52.

    Etymōtic Research. Bamford–Kowal–Bench Speech-in-Noise Test (2005).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *