Bioassembly of complex iron–sulfur enzymes: hydrogenases and nitrogenases


  • 1.

    Peters, J. W. & Broderick, J. B. Emerging paradigms for complex iron–sulfur cofactor assembly and insertion. Annu. Rev. Biochem. 81, 429–450 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Ribbe, M. W., Hu, Y., Hodgson, K. O. & Hedman, B. Biosynthesis of nitrogenase metalloclusters. Chem. Rev. 114, 4063–4080 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Vignais, P. M. & Billoud, B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Lubitz, W., Ogata, H., Rudiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Peters, J. W., Lanzilotta, W. N., Lemon, B. J. & Seefeldt, L. C. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282, 1853–1858 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Nicolet, Y., Piras, C., Legrand, P., Hatchikian, C. E. & Fontecilla-Camps, J. C. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7, 13–23 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Mulder, D. W. et al. Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydAΔEFG. Nature 465, 248–251 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Pandey, K., Islam, S. T., Happe, T. & Armstrong, F. A. Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases. Proc. Natl Acad. Sci. USA 114, 3843–3848 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Esselborn, J. et al. A structural view of synthetic cofactor integration into [FeFe]-hydrogenases. Chem. Sci. 7, 959–968 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Mulder, D. W., Guo, Y., Ratzloff, M. W. & King, P. W. Identification of a catalytic iron–hydride at the H-cluster of [FeFe]-hydrogenase. J. Am. Chem. Soc. 139, 83–86 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Reijerse, E. J. et al. Direct observation of an iron-bound terminal hydride in [FeFe]-hydrogenase by nuclear resonance vibrational spectroscopy. J. Am. Chem. Soc. 139, 4306–4309 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Sommer, C. et al. Proton coupled electronic rearrangement within the H-cluster as an essential step in the catalytic cycle of [FeFe] hydrogenases. J. Am. Chem. Soc. 139, 1440–1443 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Pelmenschikov, V. et al. Reaction coordinate leading to H2 production in [FeFe]-hydrogenase identified by nuclear resonance vibrational spectroscopy and density functional theory. J. Am. Chem. Soc. 139, 16894–16902 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Mulder, D. W. et al. Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19, 1038–1052 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Shepard, E. M. et al. [FeFe]-hydrogenase maturation. Biochemistry 53, 4090–4104 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Peters, J. W. et al. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta 1853, 1350–1369, (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Boyer, M. E., Stapleton, J. A., Kuchenreuther, J. M., Wang, C. W. & Swartz, J. R. Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol. Bioeng. 99, 59–67 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Kuchenreuther, J. M., Britt, R. D. & Swartz, J. R. New insights into [FeFe] hydrogenase activation and maturase function. PLoS ONE 7, e45850 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Kuchenreuther, J. M., Shiigi, S. A. & Swartz, J. R. Cell-free synthesis of the H-cluster: a model for the in vitro assembly of metalloprotein metal centers. Methods Mol. Biol. 1122, 49–72 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, 2001).

  • 21.

    Hanson, G. & Berliner, L. (eds) High resolution EPR: Applications to Metalloenzymes and Metals in Medicine (Springer, 2009).

  • 22.

    Hagen, W. R. Biomolecular EPR Spectroscopy (CRC, 2009).

  • 23.

    Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Landgraf, B. J., McCarthy, E. L. & Booker, S. J. Radical S-adenosylmethionine enzymes in human health and disease. Annu. Rev. Biochem. 85, 485–514 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Booker, S. J. & Grove, T. L. Mechanistic and functional versatility of radical SAM enzymes. F1000 Biol. Rep. 2, 52 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Sayler, R. I. et al. Trapping and electron paramagnetic resonance characterization of the 5′dAdo· radical in a radical S-adenosyl methionine enzyme reaction with a non-native substrate. ACS Cent. Sci. 5, 1777–1785 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Yang, H. et al. The elusive 5′-deoxyadenosyl radical: captured and characterized by electron paramagnetic resonance and electron nuclear double resonance spectroscopies. J. Am. Chem. Soc. 141, 12139–12146 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Pilet, E. et al. The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and assembly. FEBS Lett. 583, 506–511 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Nicolet, Y., Zeppieri, L., Amara, P. & Fontecilla-Camps, J. C. Crystal structure of tryptophan lyase (NosL): evidence for radical formation at the amino group of tryptophan. Angew. Chem. Int. Ed. 53, 11840–11844 (2014).

    CAS 

    Google Scholar
     

  • 30.

    Kuchenreuther, J. M. et al. A radical intermediate in tyrosine scission to the CO and CN ligands of FeFe hydrogenase. Science 342, 472–475 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Shepard, E. M. et al. [FeFe]-hydrogenase maturation: HydG-catalyzed synthesis of carbon monoxide. J. Am. Chem. Soc. 132, 9247–9249 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Driesener, R. C. et al. [FeFe]-hydrogenase cyanide ligands derived from S-adenosylmethionine-dependent cleavage of tyrosine. Angew. Chem. Int. Ed. 122, 1731–1734 (2010).


    Google Scholar
     

  • 33.

    Driesener, R. C. et al. Biochemical and kinetic characterization of radical S-adenosyl-l-methionine enzyme HydG. Biochemistry 52, 8696–8707 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Pagnier, A., Martin, L., Zeppieri, L., Nicolet, Y. & Fontecilla-Camps, J. C. CO and CN syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events. Proc. Natl Acad. Sci. USA 113, 104–109 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Kuchenreuther, J. M. et al. The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science 343, 424–427 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Wegiel, B. et al. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth. Cancer Res. 73, 7009–7021 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Matsui, T., Unno, M. & Ikeda-Saito, M. Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions. Acc. Chem. Res. 43, 240–247 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Dinis, P. et al. X-ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]-hydrogenase H-cluster assembly. Proc. Natl Acad. Sci. USA 112, 1362–1367 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Nicolet, Y. et al. Crystal structure of HydG from Carboxydothermus hydrogenoformans: a trifunctional [FeFe]-hydrogenase maturase. ChemBioChem 16, 397–402 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Rao, G., Tao, L., Suess, D. L. M. & Britt, R. D. A [4Fe–4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly. Nat. Chem. 10, 555–560 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Suess, D. L. et al. Cysteine as a ligand platform in the biosynthesis of the FeFe hydrogenase H cluster. Proc. Natl Acad. Sci. USA 112, 11455–11460 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Suess, D. L. et al. The radical SAM enzyme HydG requires cysteine and a dangler iron for generating an organometallic precursor to the [FeFe]-hydrogenase H-cluster. J. Am. Chem. Soc. 138, 1146–1149 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Myers, W. K. et al. The cyanide ligands of [FeFe] hydrogenase: pulse EPR studies of 13C and 15N-labeled H-cluster. J. Am. Chem. Soc. 136, 12237–12240 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Rao, G. & Britt, R. D. Electronic structure of two catalytic states of the [FeFe] hydrogenase H-cluster as probed by pulse electron paramagnetic resonance spectroscopy. Inorg. Chem. 57, 10935–10944 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Rao, G. et al. The binuclear cluster of [FeFe] hydrogenase is formed with sulfur donated by cysteine of an [Fe(Cys)(CO)2(CN)] organometallic precursor. Proc. Natl Acad. Sci. USA 116, 20850–20855 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Berggren, G. et al. Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66–69 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Gilbert-Wilson, R. et al. Spectroscopic investigations of [FeFe] hydrogenase maturated with [57Fe2(adt)(CN)2(CO)4]2−. J. Am. Chem. Soc. 137, 8998–9005 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Esselborn, J. et al. Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat. Chem. Biol. 9, 607–609 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Rao, G., Tao, L. & Britt, R. D. Serine is the molecular source of the NH(CH2)2 bridgehead moiety of the in vitro assembled [FeFe] hydrogenase H-cluster. Chem. Sci. 11, 1241–1247 (2020).

    CAS 

    Google Scholar
     

  • 50.

    Adamska-Venkatesh, A. et al. Spectroscopic characterization of the bridging amine in the active site of [FeFe] hydrogenase using isotopologues of the H-cluster. J. Am. Chem. Soc. 137, 12744–12747 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Reijerse, E. J. et al. Asymmetry in the ligand coordination sphere of the [FeFe] hydrogenase active site is reflected in the magnetic spin interactions of the aza-propanedithiolate ligand. J. Phys. Chem. Lett. 10, 6794–6799 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Betz, J. N. et al. [FeFe]-hydrogenase maturation: insights into the role HydE plays in dithiomethylamine biosynthesis. Biochemistry 54, 1807–1818 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Rohac, R. et al. Carbon–sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE. Nat. Chem. 8, 491–500 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Tao, L. et al. Radical SAM enzyme HydE generates adenosylated Fe(i) intermediates en route to the [FeFe]-hydrogenase catalytic H-cluster. J. Am. Chem. Soc. 142, 10841–10848 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Lacasse, M. J. & Zamble, D. B. [NiFe]-hydrogenase maturation. Biochemistry 55, 1689–1701 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Reissmann, S. et al. Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science 299, 1067–1070 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Bürstel, I. et al. CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase. Proc. Natl Acad. Sci. USA 113, 14722–14726 (2016).

    PubMed 

    Google Scholar
     

  • 58.

    Schulz, A.-C. et al. Formyltetrahydrofolate decarbonylase synthesizes the active site CO ligand of O2-tolerant [NiFe] hydrogenase. J. Am. Chem. Soc. 142, 1457–1464 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Bürstel, I. et al. A universal scaffold for synthesis of the Fe(CN)2(CO) moiety of [NiFe] hydrogenase. J. Biol. Chem. 287, 38845–38853 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Stripp, S. T. et al. HypD is the scaffold protein for Fe-(CN)2CO cofactor assembly in [NiFe]-hydrogenase maturation. Biochemistry 52, 3289–3296 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Khorasani-Motlagh, M., Noroozifar, M., Kerman, K. & Zamble, D. B. Complex formation between the Escherichia coli [NiFe]-hydrogenase nickel maturation factors. BioMetals 32, 521–532 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Lacasse, M. J., Douglas, C. D. & Zamble, D. B. Mechanism of selective nickel transfer from HypB to HypA, Escherichia coli [NiFe]-hydrogenase accessory proteins. Biochemistry 55, 6821–6831 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Hoffman, B. M., Lukoyanov, D., Yang, Z. Y., Dean, D. R. & Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem. Rev. 114, 4041–4062 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Mus, F., Alleman, A. B., Pence, N., Seefeldt, L. C. & Peters, J. W. Exploring the alternatives of biological nitrogen fixation. Metallomics 10, 523–538 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Jasniewski, A. J., Lee, C. C., Ribbe, M. W. & Hu, Y. Reactivity, mechanism, and assembly of the alternative nitrogenases. Chem. Rev. https://doi.org/10.1021/acs.chemrev.9b00704 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • 66.

    Wiig, J. A., Hu, Y. & Ribbe, M. W. NifEN-B complex of Azotobacter vinelandii is fully functional in nitrogenase FeMo cofactor assembly. Proc. Natl Acad. Sci. USA 108, 8623–8627 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Fay, A. W. et al. Spectroscopic characterization of the isolated iron–molybdenum cofactor (FeMoco) precursor from the protein NifEN. Angew. Chem. Int. Ed. 50, 7787–7790 (2011).

    CAS 

    Google Scholar
     

  • 68.

    Wilcoxen, J. et al. Electron paramagnetic resonance characterization of three iron–sulfur clusters present in the nitrogenase cofactor maturase NifB from Methanocaldococcus infernus. J. Am. Chem. Soc. 138, 7468–7471 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Wiig, J. A., Hu, Y., Chung Lee, C. & Ribbe, M. W. Radical SAM-dependent carbon insertion into the nitrogenase M-cluster. Science 337, 1672–1675 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Jasniewski, A. J. et al. Spectroscopic characterization of an eight-iron nitrogenase cofactor precursor that lacks the “9th sulfur”. Angew. Chem. Int. Ed. 58, 14703–14707 (2019).

    CAS 

    Google Scholar
     

  • 71.

    Wiig, J. A., Hu, Y. & Ribbe, M. W. Refining the pathway of carbide insertion into the nitrogenase M-cluster. Nat. Commun. 6, 8034 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Tanifuji, K. et al. Tracing the ‘ninth sulfur’ of the nitrogenase cofactor via a semi-synthetic approach. Nat. Chem. 10, 568–572 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Kaiser, J. T., Hu, Y., Wiig, J. A., Rees, D. C. & Ribbe, M. W. Structure of precursor-bound NifEN: a nitrogenase FeMo cofactor maturase/insertase. Science 331, 91–94 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Evans, R. M. et al. Mechanism of hydrogen activation by [NiFe] hydrogenases. Nat. Chem. Biol. 12, 46–50 (2015).

    PubMed 

    Google Scholar
     

  • 75.

    Rettberg, L. A. et al. Identity and function of an essential nitrogen ligand of the nitrogenase cofactor biosynthesis protein NifB. Nat. Commun. 11, 1757 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *