Brain mechanisms of eye contact during verbal communication predict autistic traits in neurotypical individuals


  • 1.

    Itier, R. J. & Batty, M. Neural bases of eye and gaze processing: The core of social cognition. Neurosci. Biobehav. Rev. 33, 843–863. https://doi.org/10.1016/j.neubiorev.2009.02.004 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Senju, A. & Johnson, M. H. The eye contact effect: Mechanisms and development. Trends Cogn. Sci. 13, 127–134. https://doi.org/10.1016/j.tics.2008.11.009 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Schilbach, L. Eye to eye, face to face and brain to brain: Novel approaches to study the behavioral dynamics and neural mechanisms of social interactions. Curr. Opin. Biobehav. Sci. 3, 130–135 (2015).

    Article 

    Google Scholar
     

  • 4.

    Lewkowicz, D. J. & Hansen-Tift, A. M. Infants deploy selective attention to the mouth of a talking face when learning speech. Proc. Natl. Acad. Sci. U.S.A. 109, 1431–1436. https://doi.org/10.1073/pnas.1114783109 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Macdonald, R. G. & Tatler, B. W. Do as eye say: Gaze cueing and language in a real-world social interaction. J. Vis. 13, 6. https://doi.org/10.1167/13.4.6 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Senju, A. & Johnson, M. H. Atypical eye contact in autism: Models, mechanisms and development. Neurosci. Biobehav. Rev. 33, 1204–1214. https://doi.org/10.1016/j.neubiorev.2009.06.001 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 7.

    APA. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) (American Psychiatric Pub, Washington, DC, 2013).


    Google Scholar
     

  • 8.

    Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J. & Clubley, E. The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, malesand females, scientists and mathematicians. J. Autism Dev. Disord. 31, 5–17 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Hoekstra, R. A., Bartels, M., Cath, D. C. & Boomsma, D. I. Factor structure, reliability and criterion validity of the autism-spectrum quotient (AQ): A study in Dutch population and patient groups. J. Autism Dev. Disord. 38, 1555–1566. https://doi.org/10.1007/s10803-008-0538-x (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Davis, J. et al. Social and attention-to-detail subclusters of autistic traits differentially predict looking at eyes and face identity recognition ability. Br. J. Psychol. https://doi.org/10.1111/bjop.12188 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Chen, F. S. & Yoon, J. M. Brief report: Broader autism phenotype predicts spontaneous reciprocity of direct gaze. J. Autism Dev. Disord. 41, 1131–1134. https://doi.org/10.1007/s10803-010-1136-2 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Jiang, J., Borowiak, K., Tudge, L., Otto, C. & von Kriegstein, K. Neural mechanisms of eye contact when listening to another person talking. Soc. Cogn. Affect. Neurosci. 12, 319–328. https://doi.org/10.1093/scan/nsw127 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Nummenmaa, L., Engell, A. D., von dem Hagen, E., Henson, R. N. & Calder, A. J. Autism spectrum traits predict the neural response to eye gaze in typical individuals. Neuroimage 59, 3356–3363. https://doi.org/10.1016/j.neuroimage.2011.10.075 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Hasegawa, N. et al. Neural activity in the posterior superior temporal region during eye contact perception correlates with autistic traits. Neurosci. Lett. 549, 45–50. https://doi.org/10.1016/j.neulet.2013.05.067 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    von dem Hagen, E. A. et al. Autism spectrum traits in the typical population predict structure and function in the posterior superior temporal sulcus. Cereb Cortex 21, 493–500. https://doi.org/10.1093/cercor/bhq062 (2011).

    Article 

    Google Scholar
     

  • 16.

    Klin, A., Jones, W., Schultz, R., Volkmar, F. & Cohen, D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch. Gen. Psychiatry 59, 809–816. https://doi.org/10.1001/archpsyc.59.9.809 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Riby, D. & Hancock, P. J. Looking at movies and cartoons: Eye-tracking evidence from Williams syndrome and autism. J. Intell. Disabil. Res. 53, 169–181. https://doi.org/10.1111/j.1365-2788.2008.01142.x (2009).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Jones, W., Carr, K. & Klin, A. Absence of preferential looking to the eyes of approaching adults predicts level of social disability in 2-year-old toddlers with autism spectrum disorder. Arch. Gen. Psychiatry 65, 946–954. https://doi.org/10.1001/archpsyc.65.8.946 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Klin, A., Jones, W., Schultz, R. & Volkmar, F. The enactive mind, or from actions to cognition: Lessons from autism. Philos. Trans. R Soc. Lond. B Biol. Sci. 358, 345–360. https://doi.org/10.1098/rstb.2002.1202 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Klin, A. & Jones, W. Altered face scanning and impaired recognition of biological motion in a 15-month-old infant with autism. Dev. Sci. 11, 40–46. https://doi.org/10.1111/j.1467-7687.2007.00608.x (2008).

    Article 
    PubMed 

    Google Scholar
     

  • 21.

    von dem Hagen, E. A. & Bright, N. High autistic trait individuals do not modulate gaze behaviour in response to social presence but look away more when actively engaged in an interaction. Autism Res. 10, 359 (2016).

    Article 

    Google Scholar
     

  • 22.

    Gurler, D., Doyle, N., Walker, E., Magnotti, J. & Beauchamp, M. A link between individual differences in multisensory speech perception and eye movements. Attent. Percep. Psychophys. 77, 1333–1341. https://doi.org/10.3758/s13414-014-0821-1 (2015).

    Article 

    Google Scholar
     

  • 23.

    Peterson, M. F. & Eckstein, M. P. Individual differences in eye movements during face identification reflect observer-specific optimal points of fixation. Psychol. Sci. 24, 1216–1225. https://doi.org/10.1177/0956797612471684 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Mehoudar, E., Arizpe, J., Baker, C. I. & Yovel, G. Faces in the eye of the beholder: Unique and stable eye scanning patterns of individual observers. J. Vis. 14, 6. https://doi.org/10.1167/14.7.6 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Freeth, M., Foulsham, T. & Kingstone, A. What affects social attention? Social presence, eye contact and autistic traits. PLoS ONE 8, e53286 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    McPartland, J. C., Webb, S. J., Keehn, B. & Dawson, G. Patterns of visual attention to faces and objects in autism spectrum disorder. J. Autism Dev. Disord. 41, 148–157. https://doi.org/10.1007/s10803-010-1033-8 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Vabalas, A. & Freeth, M. Brief report: Patterns of eye movements in face to face conversation are associated with autistic traits: Evidence from a student sample. J. Autism Dev. Disord. 46, 305–314. https://doi.org/10.1007/s10803-015-2546-y (2016).

    Article 
    PubMed 

    Google Scholar
     

  • 28.

    Morris, J. P., Pelphrey, K. A. & McCarthy, G. Controlled scanpath variation alters fusiform face activation. Soc. Cogn. Affect. Neurosci. 2, 31–38 (2007).

    Article 

    Google Scholar
     

  • 29.

    Dalton, K. M. et al. Gaze fixation and the neural circuitry of face processing in autism. Nat. Neurosci. 8, 519–526 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Marsman, J. B., Renken, R., Velichkovsky, B. M., Hooymans, J. M. & Cornelissen, F. W. Fixation based event-related fmri analysis: Using eye fixations as events in functional magnetic resonance imaging to reveal cortical processing during the free exploration of visual images. Hum. Brain Map. 33, 307–318. https://doi.org/10.1002/hbm.21211 (2012).

    Article 

    Google Scholar
     

  • 31.

    Henderson, J. M. & Choi, W. Neural correlates of fixation duration during real-world scene viewing: Evidence from fixation-related (FIRE) fMRI. J. Cogn. Neurosci. 27, 1137–1145. https://doi.org/10.1162/jocn_a_00769 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y. & Plumb, I. The, “reading the mind in the eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 42, 241–251 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Woodbury-Smith, M. R., Robinson, J., Wheelwright, S. & Baron-Cohen, S. Screening adults for Asperger syndrome using the AQ: A preliminary study of its diagnostic validity in clinical practice. J. Autism Dev. Disord. 35, 331–335 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Stoesz, B. M., Montgomery, J. M., Smart, S. L. & Hellsten, L.-A.M. Review of five instruments for the assessment of Asperger’s disorder in adults. Clin. Neuropsychol. 25, 376–401 (2011).

    Article 

    Google Scholar
     

  • 35.

    Wakabayashi, A., Baron-Cohen, S., Wheelwright, S. & Tojo, Y. The autism-spectrum quotient (AQ) in Japan: A cross-cultural comparison. J. Autism Dev. Disord. 36, 263–270. https://doi.org/10.1007/s10803-005-0061-2 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Broadbent, J., Galic, I. & Stokes, M. Validation of autism spectrum quotient adult version in an Australian sample. Autism Res. Treat. https://doi.org/10.1155/2013/984205 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Stewart, M. E. & Austin, E. J. The structure of the autism-spectrum quotient (AQ): Evidence from a student sample in Scotland. Personal. Individ. Differ. 47, 224–228. https://doi.org/10.1016/j.paid.2009.03.004 (2009).

    Article 

    Google Scholar
     

  • 38.

    Kloosterman, P. H., Keefer, K. V., Kelley, E. A., Summerfeldt, L. J. & Parker, J. D. A. Evaluation of the factor structure of the autism-spectrum quotient. Personal. Individ. Differ. 50, 310–314. https://doi.org/10.1016/j.paid.2010.10.015 (2011).

    Article 

    Google Scholar
     

  • 39.

    Austin, E. J. Personality correlates of the broader autism phenotype as assessed by the autism spectrum quotient (AQ). Personal. Individ. Differ. 38, 451–460. https://doi.org/10.1016/j.paid.2004.04.022 (2005).

    Article 

    Google Scholar
     

  • 40.

    Manera, V., Del Giudice, M., Grandi, E. & Colle, L. Individual differences in the recognition of enjoyment smiles: No role for perceptual–attentional factors and autistic-like traits. Front. Psychol. 2, 143 (2011).

    Article 

    Google Scholar
     

  • 41.

    Rhodes, G., Jeffery, L., Taylor, L. & Ewing, L. Autistic traits are linked to reduced adaptive coding of face identity and selectively poorer face recognition in men but not women. Neuropsychologia 51, 2702–2708 (2013).

    Article 

    Google Scholar
     

  • 42.

    Baron, R. M. & Kenny, D. A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51, 1173–1182 (1986).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: A module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Haxby, J. V., Hoffman, E. A. & Gobbini, M. I. The distributed human neural system for face perception. Trends Cogn. Sci. 4, 223–233 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Grill-Spector, K., Knouf, N. & Kanwisher, N. The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7, 555–562 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Rotshtein, P., Henson, R. N., Treves, A., Driver, J. & Dolan, R. J. Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nat. Neurosci. 8, 107–113. https://doi.org/10.1038/nn1370 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 47.

    Puce, A., Allison, T., Bentin, S., Gore, J. C. & McCarthy, G. Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci. 18, 2188–2199 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 48.

    O’Toole, A. J., Roark, D. A. & Abdi, H. Recognizing moving faces: A psychological and neural synthesis. Trends Cogn. Sci. 6, 261–266 (2002).

    Article 

    Google Scholar
     

  • 49.

    Pelphrey, K. A., Morris, J. P., Michelich, C. R., Allison, T. & McCarthy, G. Functional anatomy of biological motion perception in posterior temporal cortex: An FMRI study of eye, mouth and hand movements. Cereb. Cortex 15, 1866–1876. https://doi.org/10.1093/cercor/bhi064 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • 50.

    Ethofer, T., Gschwind, M. & Vuilleumier, P. Processing social aspects of human gaze: A combined fMRI-DTI study. Neuroimage 55, 411–419. https://doi.org/10.1016/j.neuroimage.2010.11.033 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Baseler, H. A., Harris, R. J., Young, A. W. & Andrews, T. J. Neural responses to expression and gaze in the posterior superior temporal sulcus interact with facial identity. Cereb. Cortex 24, 737–744. https://doi.org/10.1093/cercor/bhs360 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Turk-Browne, N. B., Norman-Haignere, S. V. & McCarthy, G. Face-specific resting functional connectivity between the fusiform gyrus and posterior superior temporal sulcus. Front. Hum. Neurosci. 4, 176. https://doi.org/10.3389/fnhum.2010.00176 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Grosbras, M. H., Beaton, S. & Eickhoff, S. B. Brain regions involved in human movement perception: A quantitative voxel-based meta-analysis. Hum. Brain Map. 33, 431–454. https://doi.org/10.1002/hbm.21222 (2012).

    Article 

    Google Scholar
     

  • 54.

    Frith, C. D. & Frith, U. The neural basis of mentalizing. Neuron 50, 531–534. https://doi.org/10.1016/j.neuron.2006.05.001 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 55.

    Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34. https://doi.org/10.1016/j.neubiorev.2014.01.009 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • 56.

    Gao, T., Scholl, B. J. & McCarthy, G. Dissociating the detection of intentionality from animacy in the right posterior superior temporal sulcus. J. Neurosci. 32, 14276–14280. https://doi.org/10.1523/JNEUROSCI.0562-12.2012 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Mar, R. A. The neural bases of social cognition and story comprehension. Annu. Rev. Psychol. 62, 103–134. https://doi.org/10.1146/annurev-psych-120709-145406 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • 58.

    Van Overwalle, F. & Baetens, K. Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage 48, 564–584. https://doi.org/10.1016/j.neuroimage.2009.06.009 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 59.

    Emery, N. J. The eyes have it: The neuroethology, function and evolution of social gaze. Neurosci. Biobehav. Rev. 24, 581–604. https://doi.org/10.1016/S0149-7634(00)00025-7 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 60.

    Peterson, M. F. & Eckstein, M. P. Looking just below the eyes is optimal across face recognition tasks. Proc. Natl. Acad. Sci. U.S.A. 109, E3314-3323. https://doi.org/10.1073/pnas.1214269109 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Yi, A., Wong, W. & Eizenman, M. Gaze patterns and audiovisual speech enhancement. J. Speech Lang. Hear. Res. 56, 471–480. https://doi.org/10.1044/1092-4388(2012/10-0288) (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 62.

    Nath, A. R. & Beauchamp, M. S. A neural basis for interindividual differences in the McGurk effect, a multisensory speech illusion. Neuroimage 59, 781–787. https://doi.org/10.1016/j.neuroimage.2011.07.024 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • 63.

    Laidlaw, K. E., Foulsham, T., Kuhn, G. & Kingstone, A. Potential social interactions are important to social attention. Proc. Natl. Acad. Sci. U.S.A. 108, 5548–5553. https://doi.org/10.1073/pnas.1017022108 (2011).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Pelphrey, K. A., Morris, J. P. & McCarthy, G. Neural basis of eye gaze processing deficits in autism. Brain 128, 1038–1048. https://doi.org/10.1093/brain/awh404 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • 65.

    Redcay, E. et al. Atypical brain activation patterns during a face-to-face joint attention game in adults with autism spectrum disorder. Hum. Brain Mapp. 34, 2511–2523. https://doi.org/10.1002/hbm.22086 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 66.

    Prior, M. et al. Are there subgroups within the autistic spectrum? A cluster analysis of a group of children with autistic spectrum disorders. J. Child Psychol. Psychiatry 39, 893–902 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 67.

    Beglinger, L. J. & Smith, T. H. A review of subtyping in autism and proposed dimensional classification model. J. Autism Dev. Disord. 31, 411–422 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 68.

    Button, K. S. et al. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 69.

    Bacchetti, P. Small sample size is not the real problem. Nat. Rev. Neurosci. 14, 585 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 70.

    Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).

    Article 

    Google Scholar
     

  • 71.

    Peterson, E. & Miller, S. F. The eyes test as a measure of individual differences: How much of the variance reflects verbal IQ?. Front. Psychol. https://doi.org/10.3389/fpsyg.2012.00220 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Rojas, D. C. et al. Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry 6, 56. https://doi.org/10.1186/1471-244X-6-56 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Oldfield, R. C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).

    CAS 
    Article 

    Google Scholar
     

  • 74.

    Freitag, C. et al. Evaluation der deutschen Version des Autismus-Spektrum-Quotienten (AQ)-die Kurzversion AQ-k. Z. Klin. Psychol. Psychiatr. Psychother. 36, 280–289 (2007).

    Article 

    Google Scholar
     

  • 75.

    Kitazoe, N., Fujita, N., Izumoto, Y., Terada, S. I. & Hatakenaka, Y. Whether the autism spectrum quotient consists of two different subgroups? Cluster analysis of the autism spectrum quotient in general population. Autism Int. J. Res. Pract. 21, 323–332. https://doi.org/10.1177/1362361316638787 (2017).

    Article 

    Google Scholar
     

  • 76.

    Friston, K. J. et al. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218–229. https://doi.org/10.1006/nimg.1997.0291 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 77.

    Friston, K. J. Functional and effective connectivity: A review. Brain Connect. 1, 13–36 (2011).

    Article 

    Google Scholar
     

  • 78.

    Maldjian, J. A., Laurienti, P. J., Kraft, R. A. & Burdette, J. H. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19, 1233–1239 (2003).

    Article 

    Google Scholar
     

  • 79.

    Eickhoff, S. B. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335. https://doi.org/10.1016/j.neuroimage.2004.12.034 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • 80.

    Duvernoy, H. The Human Brain (Springer, New York, 1991).


    Google Scholar
     

  • 81.

    Hunt, L. T., Dolan, R. J. & Behrens, T. E. Hierarchical competitions subserving multi-attribute choice. Nat. Neurosci. 17, 1613 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 82.

    Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018 (2012).

    Article 

    Google Scholar
     

  • 83.

    Brett, M., Anton, J.-L., Valabregue, R. & Poline, J.-B. Region of interest analysis using the MarsBar toolbox for SPM 99. Neuroimage 16, S497 (2002).


    Google Scholar
     

  • 84.

    Sobel, M. Asymptotic confidence intervals for indirect effects in structural equation models. Sociol. Methodol. 13, 290–312 (1982).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *