Butterfly effect and a self-modulating El Niño response to global warming


  • 1.

    Ropelewski, C. F. & Halpert, M. S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weath. Rev. 115, 1606–1626 (1987).

    ADS 

    Google Scholar
     

  • 2.

    McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 3.

    Jonkman, S. N. Global perspectives on loss of human life caused by floods. Nat. Hazards 34, 151–175 (2005).


    Google Scholar
     

  • 4.

    Kunii, O., Nakamura, S., Abdur, R. & Wakai, S. The impact on health and risk factors of the diarrhoea epidemics in the 1998 Bangladesh floods. Public Health 116, 68–74 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    del Ninno, C. & Dorosh, P. A. Averting a food crisis: private imports and public targeted distribution in Bangladesh after the 1998 flood. Agric. Econ. 25, 337–346 (2001).


    Google Scholar
     

  • 6.

    Cai, W. et al. More extreme swings of the South Pacific convergence zone due to greenhouse warming. Nature 488, 365–369 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 7.

    Frauen, C. & Dommenget, D. El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys. Res. Lett. 37, L18801 (2010).

    ADS 

    Google Scholar
     

  • 8.

    Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).

    ADS 

    Google Scholar
     

  • 9.

    Choi, K.-Y., Vecchi, G. A. & Wittenberg, A. T. ENSO transition, duration, and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J. Clim. 26, 9462–9476 (2013).

    ADS 

    Google Scholar
     

  • 10.

    Dommenget, D., Bayr, T. & Frauen, C. Analysis of the non-linearity in the pattern and time evolution of El Niño Southern Oscillation. Clim. Dyn. 40, 2825–2847 (2013).


    Google Scholar
     

  • 11.

    Takahashi, K. & Dewitte, B. Strong and moderate nonlinear El Niño regimes. Clim. Dyn. 46, 1627–1645 (2016).


    Google Scholar
     

  • 12.

    Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015).

    ADS 

    Google Scholar
     

  • 13.

    Karamperidou, C., Jin, F.-F. & Conroy, J. L. The importance of ENSO nonlinearities in tropical Pacific response to external forcing. Clim. Dyn. 49, 2695–2704 (2017).


    Google Scholar
     

  • 14.

    Geng, T., Cai, W., Wu, L. & Yang, Y. Atmospheric convection dominates genesis of ENSO asymmetry. Geophys. Res. Lett. 46, 8387–8396 (2019).

    ADS 

    Google Scholar
     

  • 15.

    Sun, D.-Z. et al. Radiative and dynamical feedbacks over the equatorial cold tongue: results from nine atmospheric GCMs. J. Clim. 19, 4059–4074 (2006).

    ADS 

    Google Scholar
     

  • 16.

    Lloyd, J., Guilyardi, E., Weller, H. & Slingo, J. The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett. 10, 170–176 (2009).

    ADS 

    Google Scholar
     

  • 17.

    Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 18.

    Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).

    ADS 

    Google Scholar
     

  • 19.

    Stevenson, S., Fox-Kemper, B., Jochum, M., Rajagopalan, B. & Yeager, S. G. ENSO model validation using wavelet probability analysis. J. Clim. 23, 5540–5547 (2010).

    ADS 

    Google Scholar
     

  • 20.

    Stevenson, S. L. Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett. 39, L17703 (2012).

    ADS 

    Google Scholar
     

  • 21.

    Cobb, K. M. et al. Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 22.

    Maher, N., Matei, D., Milinski, S. & Marotzke, J. ENSO change in climate projections: forced response or internal variability? Geophys. Res. Lett. 45, 11390–11398 (2018).

    ADS 

    Google Scholar
     

  • 23.

    Zheng, X. T., Hui, C. & Yeh, S. W. Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability. Clim. Dyn. 50, 4019–4035 (2018).


    Google Scholar
     

  • 24.

    Lorenz, E. N. The predictability of a flow which possesses many scales of motion. Tellus 21, 289–307 (1969).

    ADS 

    Google Scholar
     

  • 25.

    Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020); correction https://doi.org/10.1038/s41558-020-0854-5 (2020).

    Article 
    ADS 

    Google Scholar
     

  • 26.

    Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences 12, 3301–3320 (2015).

    ADS 

    Google Scholar
     

  • 27.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS 

    Google Scholar
     

  • 28.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    ADS 

    Google Scholar
     

  • 29.

    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • 30.

    Kug, J.-S., Jin, F.-F. & An, S.-I. Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J. Clim. 22, 1499–1515 (2009).

    ADS 

    Google Scholar
     

  • 31.

    Kao, H. Y. & Yu, J.-Y. Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J. Clim. 22, 615–632 (2009).

    ADS 

    Google Scholar
     

  • 32.

    Cai, W. et al. More frequent extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    ADS 

    Google Scholar
     

  • 33.

    Lorenz, E. N. Empirical Orthogonal Functions and Statistical Weather Prediction Statistical Forecast Project Report 1 (MIT Department of Meteorology, 1956).

  • 34.

    Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar
     

  • 35.

    Kay, J. E. et al. The community earth system model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    ADS 

    Google Scholar
     

  • 36.

    Bayr, T., Dommenget, D. & Latif, M. Walker circulation controls ENSO atmospheric feedbacks in uncoupled and coupled climate model simulations. Clim. Dyn. 54, 2831–2846 (2020).


    Google Scholar
     

  • 37.

    Guilyardi, E. et al. Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull. Am. Meteorol. Soc. 90, 325–340 (2009).

    ADS 

    Google Scholar
     

  • 38.

    Bellenger, H., Guilyardi, É., Leloup, J., Lengaigne, M. & Vialard, J. ENSO representation in climate models: from CMIP3 to CMIP5. Clim. Dyn. 42, 1999–2018 (2014).


    Google Scholar
     

  • 39.

    Bayr, T. et al. Mean-state dependence of ENSO atmospheric feedbacks in climate models. Clim. Dyn. 50, 3171–3194 (2018).


    Google Scholar
     

  • 40.

    Bayr, T. et al. Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Clim. Dyn. 53, 155–172 (2019).


    Google Scholar
     

  • 41.

    Choi, J., An, S. I., Kug, J. S. & Yeh, S. W. The role of mean state on changes in El Niño’s flavor. Clim. Dyn. 37, 1205–1215 (2011).


    Google Scholar
     

  • 42.

    Vijayeta, A. & Dommenget, D. An evaluation of ENSO dynamics in CMIP simulations in the framework of the recharge oscillator model. Clim. Dyn. 51, 1753–1771 (2018).


    Google Scholar
     

  • 43.

    Jin, F. F. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    ADS 

    Google Scholar
     

  • 44.

    Johnson, N. C. & Xie, S.-P. Changes in the sea surface temperature threshold for tropical convection. Nat. Geosci. 3, 842–845 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • 45.

    Sun, L., Alexander, M. & Deser, C. Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Clim. 31, 7823–7843 (2018).

    ADS 

    Google Scholar
     

  • 46.

    Hu, Z. Z. et al. Weakened interannual variability in the tropical Pacific Ocean since 2000. J. Clim. 26, 2601–2613 (2013).

    ADS 

    Google Scholar
     

  • 47.

    Guan, C. & McPhaden, M. J. Ocean processes affecting the twenty-first-century shift in ENSO SST variability. J. Clim. 29, 6861–6879 (2016).

    ADS 

    Google Scholar
     

  • 48.

    Hu, Z. Z., Kumar, A., Huang, B., Zhu, J. & Ren, H. L. Interdecadal variations of ENSO around 1999/2000. J. Meteorol. Res. 31, 73–81 (2017).


    Google Scholar
     

  • 49.

    Xu, K., Wang, W., Liu, B. & Zhu, C. Weakening of the El Niño amplitude since the late 1990s and its link to decadal change in the North Pacific climate. Int. J. Climatol. 39, 4125–4138 (2019).


    Google Scholar
     

  • 50.

    Philander, S. et al. Why the ITCZ is mostly north of the Equator. J. Clim. 9, 2958–2972 (1996).

    ADS 

    Google Scholar
     

  • 51.

    Xie, S.-P. in The Hadley Circulation: Present, Past and Future (eds Diaz, H. F. & Bradley, R. S.) 121–152 (Advances in Global Change Research Vol. 21, Kluwer Academic Publishers, 2005).

  • 52.

    Zuo, H., Balmaseda, M. A. & Mogensen, K. The new eddy-permitting ORAP5 ocean reanalysis: description, evaluation and uncertainties in climate signals. Clim. Dyn. 49, 791–811 (2017).


    Google Scholar
     

  • 53.

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).


    Google Scholar
     

  • 54.

    Huang, B. et al. Extended reconstructed sea surface temperature version 5 (ERSSTv5), upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    ADS 

    Google Scholar
     

  • 55.

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    ADS 

    Google Scholar
     

  • 56.

    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. https://doi.org/10.1002/qj.3803 (2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *