CO2-earth. Daily CO2 Values. CO2-earths, https://www.co2.earth/daily-co2 (2020).
NASA: Global Climate Change. Global Climate Change: The Relentless Rise of Carbon Dioxide. NASA: Global Climate Change. NASA, https://climate.nasa.gov/climate_resources/24/ (2017).
Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
Pimm, S. L. Climate disruption and biodiversity. Curr. Biol. 19, R595–R601 (2009).
Praksh, G.K., Olah, G.A., Licht, S. & Jackson, N. B. Reversing Global Warming: Chemical Recycling and Utilization of CO2, Report of 2008 NSF Workshop. https://loker.usc.edu/ReversingGlobalWarming.pdf (2008).
Khanna, V., Bakshi, B. R. & Lee, L. J. Carbon nanofiber production: Life cycle energy consumption and environmental impact. J. Ind. Ecol. 12, 394–410 (2008).
Licht, S. STEP (solar thermal electrochemical photo) generation of energetic molecules: a solar chemical process to end anthropogenic global warming. J. Phys. Chem. C 113, 16283–16292 (2009).
Licht, S. et al. New solar carbon capture process: STEP carbon capture. J. Phys. Chem. Lett. 1, 2363–2368 (2010).
Ren, J., Li, F., Lau, J., Gonzalez-Urbina, L. & Licht, S. One-pot synthesis of carbon nanofibers from CO2. Nano Lett. 15, 6142–6148 (2015).
Ren, J., Lau, J., Lefler, M. & Licht, S. The minimum electrolytic energy needed to convert carbon dioxide to carbon by electrolysis in carbonate melts. J. Phys. Chem. C. 119, 23342–23349 (2015).
Ren, J. & Licht, S. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes. Sci. Rep. 6, 27760–27761–11 (2016).
Licht, S. et al. Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes. ACS Cent. Sci. 2, 162–168 (2016).
Lau, J., Dey, G. & Licht, S. Thermodynamic assessment of CO2 to carbon nanofiber transformation for carbon sequestration in a combined cycle gas or a coal power plant. Energy Conser. Manag. 122, 400–410 (2016).
Dey, G., Ren, J., El-Ghazawi, O. & Licht, S. How does an amalgamated Ni cathode affect carbon nanotube growth?. RSC Adv. 122, 400–410 (2016).
Ren, J., Johnson, M., Singhal, R. & Licht, S. Transformation of the greenhouse gas CO2 by molten electrolysis into a wide controlled selection of carbon nanotubes. J. CO2 Util. 18, 335–344 (2017).
Licht, S. Co-production of cement and carbon nanotubes with a carbon negative footprint. J. CO2 Util. 18, 378–389 (2017).
Johnson, M. et al. Data on SEM, TEM and Raman spectra of doped, and wool carbon nanotubes made directly from CO2 by molten electrolysis. Data Br. 14, 592–606 (2017).
Johnson, M. et al. Carbon nanotube wools made directly from CO2 by molten electrolysis: value driven pathways to carbon dioxide greenhouse gas mitigation. Mater. Today Energy 5, 230–236 (2017).
Liu, X., Ren, J., Licht, G., Wang, X. & Licht, S. Carbon nano-onions made directly from CO2 by molten electrolysis for greenhouse gas mitigation. Adv. Sustain. Syst. 1900056, 1–10 (2019).
Licht, S. et al. Amplified CO2 reduction of greenhouse gas emissions with C2CNT carbon nanotube composites. Mater. Today Sustain. 6, 100023 (2019).
Wang, X., Liu, X., Licht, G., Wang, B. & Licht, S. Exploration of alkali cation variation on the synthesis of carbon nanotubes by electrolysis of CO2 in molten carbonates. J. CO2 Util. 18, 303–312 (2019).
Ren, J. et al. Recent advances in solar thermal electrochemical process (STEP) for carbon neutral products and high value nanocarbons. Accounts Chem. Res. 52, 3177–3187 (2019).
Liu, X., Wang, X., Licht, G., & Licht, S. Transformation of the greenhouse gas carbon dioxide to graphene. J. CO2 Util., 36, 288–294 (2020).
Wang, X., Sharif, F., Liu, X., Licht, G., Lefler, M, & Licht, S. Magnetic carbon nanotubes: Carbide nucleated electrochemical growth of ferromagnetic CNTs from CO2. J. CO2 Util. 40, 101218 1–10 (2020).
Cheaptubes.com. Thin Walled Carbon Nanotubes., Single Walled Carbon Nanotubes, https://www.cheaptubes.com/product/thin-walled-carbon-nanotubes (2020).
Boddanov, V. N., Mikhailov, I. G. & Nemilov, S. V. Phys. Chem. Glasses. Sov. Phys. Acoust. 20, 310–313 (1975).
Sato, M. & Yokokawa, T. Concentration overpotential of Pt-oxygen electrode reaction in molten Na2O–B2O3. Trans. JIM 16, 441–444 (1975).
Itoh, H., Sasahira, A., Makeawa, T.,& Yokokawa, T. Electromotive-force measurements of molten oxide mixtures. Part 8—thermodynamic properties of Na2O–B2O3 melts. J. Chem. Soc. Faraday Trans. 1 80, 473–487 (1984).
Claes, P., Coq, J. L. & Glibert, J. Electrical conductivity of molten B2O3–Na2O mixtures. Electrochim. Acta 33, 347–352 (1988).
Park, S. & Sohn, I. Effect of Na2O on the high-temperature thermal conductivity and structure of Na2O–B2O3 Melts. J. Am. Ceram. Soc. 99, 612–618 (2016).
Kirfel, A. The electron density distribution in calcium metaborate, Ca(BO2)2. Act Cryst. B43, 333–343 (1987).
Fujimoto, M. et al. Crystal growth and characterization of calcium metaborate scintillators. Nucl. Instrum. Methods Phys. Res. A. 703, 7–10 (2013).
Kim, Y., Yanaba, Y. & Morita, K. Influence of structure and temperature on the thermal conductivity of molten CaO–B2O3. J. Am. Ceram. Soc. 100, 5746–5754 (2017).