Calcium metaborate induced thin walled carbon nanotube syntheses from CO2 by molten carbonate electrolysis


  • 1.

    CO2-earth. Daily CO2 Values. CO2-earths, https://www.co2.earth/daily-co2 (2020).

  • 2.

    NASA: Global Climate Change. Global Climate Change: The Relentless Rise of Carbon Dioxide. NASA: Global Climate Change. NASA, https://climate.nasa.gov/climate_resources/24/ (2017).

  • 3.

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Pimm, S. L. Climate disruption and biodiversity. Curr. Biol. 19, R595–R601 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Praksh, G.K., Olah, G.A., Licht, S. & Jackson, N. B. Reversing Global Warming: Chemical Recycling and Utilization of CO2, Report of 2008 NSF Workshop. https://loker.usc.edu/ReversingGlobalWarming.pdf (2008).

  • 6.

    Khanna, V., Bakshi, B. R. & Lee, L. J. Carbon nanofiber production: Life cycle energy consumption and environmental impact. J. Ind. Ecol. 12, 394–410 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Licht, S. STEP (solar thermal electrochemical photo) generation of energetic molecules: a solar chemical process to end anthropogenic global warming. J. Phys. Chem. C 113, 16283–16292 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Licht, S. et al. New solar carbon capture process: STEP carbon capture. J. Phys. Chem. Lett. 1, 2363–2368 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Ren, J., Li, F., Lau, J., Gonzalez-Urbina, L. & Licht, S. One-pot synthesis of carbon nanofibers from CO2. Nano Lett. 15, 6142–6148 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Ren, J., Lau, J., Lefler, M. & Licht, S. The minimum electrolytic energy needed to convert carbon dioxide to carbon by electrolysis in carbonate melts. J. Phys. Chem. C. 119, 23342–23349 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Ren, J. & Licht, S. Tracking airborne CO2 mitigation and low cost transformation into valuable carbon nanotubes. Sci. Rep. 6, 27760–27761–11 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Licht, S. et al. Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes. ACS Cent. Sci. 2, 162–168 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Lau, J., Dey, G. & Licht, S. Thermodynamic assessment of CO2 to carbon nanofiber transformation for carbon sequestration in a combined cycle gas or a coal power plant. Energy Conser. Manag. 122, 400–410 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Dey, G., Ren, J., El-Ghazawi, O. & Licht, S. How does an amalgamated Ni cathode affect carbon nanotube growth?. RSC Adv. 122, 400–410 (2016).


    Google Scholar
     

  • 15.

    Ren, J., Johnson, M., Singhal, R. & Licht, S. Transformation of the greenhouse gas CO2 by molten electrolysis into a wide controlled selection of carbon nanotubes. J. CO2 Util. 18, 335–344 (2017).

  • 16.

    Licht, S. Co-production of cement and carbon nanotubes with a carbon negative footprint. J. CO2 Util. 18, 378–389 (2017).

  • 17.

    Johnson, M. et al. Data on SEM, TEM and Raman spectra of doped, and wool carbon nanotubes made directly from CO2 by molten electrolysis. Data Br. 14, 592–606 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Johnson, M. et al. Carbon nanotube wools made directly from CO2 by molten electrolysis: value driven pathways to carbon dioxide greenhouse gas mitigation. Mater. Today Energy 5, 230–236 (2017).

    Article 

    Google Scholar
     

  • 19.

    Liu, X., Ren, J., Licht, G., Wang, X. & Licht, S. Carbon nano-onions made directly from CO2 by molten electrolysis for greenhouse gas mitigation. Adv. Sustain. Syst. 1900056, 1–10 (2019).


    Google Scholar
     

  • 20.

    Licht, S. et al. Amplified CO2 reduction of greenhouse gas emissions with C2CNT carbon nanotube composites. Mater. Today Sustain. 6, 100023 (2019).

    Article 

    Google Scholar
     

  • 21.

    Wang, X., Liu, X., Licht, G., Wang, B. & Licht, S. Exploration of alkali cation variation on the synthesis of carbon nanotubes by electrolysis of CO2 in molten carbonates. J. CO2 Util. 18, 303–312 (2019).

  • 22.

    Ren, J. et al. Recent advances in solar thermal electrochemical process (STEP) for carbon neutral products and high value nanocarbons. Accounts Chem. Res. 52, 3177–3187 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Liu, X., Wang, X., Licht, G., & Licht, S. Transformation of the greenhouse gas carbon dioxide to graphene. J. CO2 Util., 36, 288–294 (2020).

  • 24.

    Wang, X., Sharif, F., Liu, X., Licht, G., Lefler, M, & Licht, S. Magnetic carbon nanotubes: Carbide nucleated electrochemical growth of ferromagnetic CNTs from CO2. J. CO2 Util. 40, 101218 1–10 (2020).

  • 25.

    Cheaptubes.com. Thin Walled Carbon Nanotubes., Single Walled Carbon Nanotubes, https://www.cheaptubes.com/product/thin-walled-carbon-nanotubes (2020).

  • 26.

    Boddanov, V. N., Mikhailov, I. G. & Nemilov, S. V. Phys. Chem. Glasses. Sov. Phys. Acoust. 20, 310–313 (1975).


    Google Scholar
     

  • 27.

    Sato, M. & Yokokawa, T. Concentration overpotential of Pt-oxygen electrode reaction in molten Na2O–B2O3. Trans. JIM 16, 441–444 (1975).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Itoh, H., Sasahira, A., Makeawa, T.,& Yokokawa, T. Electromotive-force measurements of molten oxide mixtures. Part 8—thermodynamic properties of Na2O–B2O3 melts. J. Chem. Soc. Faraday Trans. 1 80, 473–487 (1984).

  • 29.

    Claes, P., Coq, J. L. & Glibert, J. Electrical conductivity of molten B2O3–Na2O mixtures. Electrochim. Acta 33, 347–352 (1988).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Park, S. & Sohn, I. Effect of Na2O on the high-temperature thermal conductivity and structure of Na2O–B2O3 Melts. J. Am. Ceram. Soc. 99, 612–618 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Kirfel, A. The electron density distribution in calcium metaborate, Ca(BO2)2. Act Cryst. B43, 333–343 (1987).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Fujimoto, M. et al. Crystal growth and characterization of calcium metaborate scintillators. Nucl. Instrum. Methods Phys. Res. A. 703, 7–10 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Kim, Y., Yanaba, Y. & Morita, K. Influence of structure and temperature on the thermal conductivity of molten CaO–B2O3. J. Am. Ceram. Soc. 100, 5746–5754 (2017).

    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *