Circular economy strategies for electric vehicle batteries reduce reliance on raw materials


  • 1.

    Campbell, G. A. The cobalt market revisited. Miner. Econ. https://doi.org/10.1007/s13563-019-00173-8 (2019).

  • 2.

    Shedd, K. B., McCullough, E. A. & Bleiwas, D. I. Global trends affecting the supply security of cobalt. Min. Eng. 69, 37–42 (2017).

    Article 

    Google Scholar
     

  • 3.

    Gulley, A. L., McCullough, E. A. & Shedd, K. B. China’s domestic and foreign influence in the global cobalt supply chain. Resour. Policy 62, 317–323 (2019).

    Article 

    Google Scholar
     

  • 4.

    Petavrazi, E., Gunn, G. & Kresse, C. Commodity Review: Cobalt (BGS, 2019).

  • 5.

    Electric Vehicle Outlook 2020 (Bloomberg New Energy Finance, 2020).

  • 6.

    Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE 100, 1518–1534 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Final List of Critical Minerals 2018 (US Department of the Interior, 2018).

  • 10.

    Australia’s Critical Minerals Strategy 2019 (Commonwealth of Australia, 2019).

  • 11.

    Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 List of Critical Raw Materials for the EU (European Commision, 2017).

  • 12.

    Lavietes, M. Tesla, Apple among firms accused of aiding child labor in Congo. Reuters (16 December 2019).

  • 13.

    Vaalma, C., Buchholz, D., Weil, M. & Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 3, 18013 (2018).

    Article 

    Google Scholar
     

  • 14.

    Cusenza, M. A., Guarino, F., Longo, S., Ferraro, M. & Cellura, M. Energy and environmental benefits of circular economy strategies: the case study of reusing used batteries from electric vehicles. J. Energy Storage https://doi.org/10.1016/j.est.2019.100845 (2019).

  • 15.

    Yang, J., Gu, F. & Guo, J. Environmental feasibility of secondary use of electric vehicle lithium-ion batteries in communication base stations. Resour. Conserv. Recycl. https://doi.org/10.1016/j.resconrec.2020.104713 (2020).

  • 16.

    Harper, G. et al. Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Ziemann, S., Müller, D. B., Schebek, L. & Weil, M. Modeling the potential impact of lithium recycling from EV batteries on lithium demand: a dynamic MFA approach. Resour. Conserv. Recycl. 133, 76–85 (2018).

    Article 

    Google Scholar
     

  • 18.

    Harvey, L. D. D. Resource implications of alternative strategies for achieving zero greenhouse gas emissions from light-duty vehicles by 2060. Appl. Energy 212, 663–679 (2018).

    Article 

    Google Scholar
     

  • 19.

    Miedema, J. H. & Moll, H. C. Lithium availability in the EU27 for battery-driven vehicles: the impact of recycling and substitution on the confrontation between supply and demand until 2050. Resour. Policy 38, 204–211 (2013).

    Article 

    Google Scholar
     

  • 20.

    Melin, H. E. State-of-the-Art in Reuse and Recycling of Lithium-Ion Batteries—A Research Review (Circular Energy Storage, 2019).

  • 21.

    Nguyen, R. T., Fishman, T., Zhao, F., Imholte, D. D. & Graedel, T. E. Analyzing critical material demand: a revised approach. Sci. Total Environ. 630, 1143–1148 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Regulation (EU) 2019/631 of the European Parliament and the Council of 17 April 2019 Setting CO2 Emission Performance Standards for New Passenger Cars and for New Light Commercial Vehicles, and Repealing Regulations (EC) No 443/2009 and (EU) No 510/2011 (European Union, 2019).

  • 23.

    Hill, G., Heidrich, O., Creutzig, F. & Blythe, P. The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget. Appl. Energy 251, 113111 (2019).

    Article 

    Google Scholar
     

  • 24.

    Godoy León, M. F., Blengini, G. A. & Dewulf, J. Cobalt in end-of-life products in the EU, where does it end up? The MaTrace approach. Resour. Conserv. Recycl. https://doi.org/10.1016/j.resconrec.2020.104842 (2020).

  • 25.

    Europe’s Clean Mobility Outlook: Scenarios for the EU Light-Duty Vehicle Fleet, Associated Energy Needs and Emissions, 2020–2050 (Ricardo, 2018).

  • 26.

    Berg, H. & Zackrisson, M. Perspectives on environmental and cost assessment of lithium metal negative electrodes in electric vehicle traction batteries. J. Power Sources 415, 83–90 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    US DRIVE—Electrochemical Energy Storage Technical Team Roadmap (DOE, 2017).

  • 28.

    Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy https://doi.org/10.1038/s41560-020-0575-z (2020).

  • 29.

    Dias, A. P., Blagoeva, D. T., Pavel, C. & Arvanitidis, N. Cobalt: Demand–Supply Balances in the Transition to Electric Mobility (Publications Office of the European Union, 2018).

  • 30.

    Lithium and Cobalt—A Tale of Two Commodities (McKinsey, 2018).

  • 31.

    Fu, X. et al. Perspectives on cobalt supply through 2030 in the face of changing demand. Environ. Sci. Technol. 54, 2985–2993 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Neubauer, J. S., Smith, K., Wood, E. & Pesaran, A. Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries (National Renewable Energy Laboratory, 2015).

  • 33.

    Saxena, S., Le Floch, C., MacDonald, J. & Moura, S. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models. J. Power Sources 282, 265–276 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Assessment of the Implementation of Directive 2000/53/EU on End-of-Life Vehicles (the ELV Directive) with Emphasis on the End of Life Vehicles of Unknown Whereabouts (European Commission, 2018).

  • 35.

    PEFCR—Product Environmental Footprint Category Rules for High Specific Energy Rechargeable Batteries for Mobile Applications (Recharge Association, 2018).

  • 36.

    Placke, T., Kloepsch, R., Dühnen, S. & Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electrochem. 21, 1939–1964 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Bianchini, M., Roca-Ayats, M., Hartmann, P., Brezesinski, T. & Janek, J. There and back again—the journey of LiNiO2 as a cathode active material. Angew. Chem. Int. Ed. Engl. 58, 10434–10458 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Boehm, M. & Thomas, O. Looking beyond the rim of one’s teacup: a multidisciplinary literature review of product–service systems in information systems, business management, and engineering & design. J. Clean. Prod. 51, 245–260 (2013).

    Article 

    Google Scholar
     

  • 39.

    EASE & Delta-EE European electrical storage market grows by 49% in 2017 to 589 MWh. Delta Energy & Environment (2 July 2018).

  • 40.

    Henze, V. Energy storage investments boom as battery costs halve in the next decade. Bloomberg New Energy Finance (31 July 2019).

  • 41.

    Hill, N., Clarke, D., Blair, L. & Menadue, H. Circular Economy Perspectives for the Management of Batteries Used in Electric Vehicles Final Project Report (Ricardo, 2019).

  • 42.

    Circular Energy Storage Online (Circular Energy Storage, 2020).

  • 43.

    Schmidt, T., Buchert, M. & Schebek, L. Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries. Resour. Conserv. Recycl. 112, 107–122 (2016).

    Article 

    Google Scholar
     

  • 44.

    2015 Minerals Yearbook: Cobalt [Advance Release] (USGS, 2019).

  • 45.

    Müller, M. et al. Evaluation of grid-level adaptability for stationary battery energy storage system applications in Europe. J. Energy Storage 9, 1–11 (2017).

    Article 

    Google Scholar
     

  • 46.

    Stahl, H. et al. Evaluation of the Directive 2006/66/EC on Batteries and Accumulators and Waste Batteries and Accumulators (Trinomics, 2018).

  • 47.

    Tagliaferri, C. et al. Life cycle assessment of future electric and hybrid vehicles: a cradle-to-grave systems engineering approach. Chem. Eng. Res. Des. 112, 298–309 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Wang, X., Gaustad, G., Babbitt, C. W. & Richa, K. Economies of scale for future lithium-ion battery recycling infrastructure. Resour. Conserv. Recycl. 83, 53–62 (2014).

    Article 

    Google Scholar
     

  • 49.

    Favot, M. & Massarutto, A. Rare-earth elements in the circular economy: the case of yttrium. J. Environ. Manage. 240, 504–510 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 50.

    Müller, E., Hilty, L. M., Widmer, R., Schluep, M. & Faulstich, M. Modeling metal stocks and flows: a review of dynamic material flow analysis methods. Environ. Sci. Technol. 48, 2102–2113 (2014).

    Article 

    Google Scholar
     

  • 51.

    Monitoring of CO2Emissions from Passenger Cars—Data 2017 (European Environmental Agency, 2020)

  • 52.

    Nelson, P. A., Gallagher, K. G., Bloom, I. & Dees, D. W. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles (Argonne National Laboratory, 2012).

  • 53.

    Pillot, C. Lithium Ion Battery Raw Material Supply & Demand 2016–2025 (Avicenne Energy, 2017).

  • 54.

    Cusenza, M. A., Bobba, S., Ardente, F., Cellura, M. & Di Persio, F. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2019.01.056 (2019).

  • 55.

    EPA’s Transportation and Air Quality Document Index System (DIS) (EPA, 2019).

  • 56.

    Heppel, G. Cobalt shifts from metal to chemical markets. CRU (8 September 2017).

  • 57.

    Farchy, J. & Warren, H. China has a secret weapon in the race to dominate electric cars. Bloomberg (2 December 2018).

  • 58.

    Brunner, P. H. & Rechberger, H. Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers 2nd edn (CRC Press, 2016).

  • 59.

    Wu, T., Zhao, H. & Ou, X. Vehicle ownership analysis based on GDP per capita in China: 1963–2050. Sustainability 6, 4877–4899 (2014).

    Article 

    Google Scholar
     

  • 60.

    Population on 1st January by Age, Sex and Type of Projection (Eurostat, 2018).

  • 61.

    Nykvist, B., Sprei, F. & Nilsson, M. Assessing the progress toward lower priced long range battery electric vehicles. Energy Policy 124, 144–155 (2019).

    Article 

    Google Scholar
     

  • 62.

    European Vehicle Market Statistics: Pocketbook 2017/18 (ICCT, 2017).

  • 63.

    Global EV Outlook 2018: Towards Cross-Modal Electrification (International Energy Agency, 2018).

  • 64.

    Wentker, M., Greenwood, M. & Leker, J. A bottom-up approach to lithium-ion battery cost modeling with a focus on cathode active materials. Energies https://doi.org/10.3390/en12030504 (2019).

  • 65.

    Dun, G., Pridmore, A., Gibson, G., Kollamthodi, S. & Skinner, I. Data Gathering and Analysis to Assess the Impact of Mileage on the Cost Effectiveness of the LDV CO2Regulation (Ricardo, 2014).

  • 66.

    Zubi, G., Dufo-López, R., Carvalho, M. & Pasaoglu, G. The lithium-ion battery: state of the art and future perspectives. Renew. Sustain. Energy Rev. 89, 292–308 (2018).

    Article 

    Google Scholar
     

  • 67.

    Martinez-Laserna, E. et al. Technical viability of battery second life: a study from the ageing perspective. IEEE Trans. Ind. Appl. 54, 2703–2713 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 68.

    Peters, J. F., Baumann, M., Zimmermann, B., Braun, J. & Weil, M. The environmental impact of Li-ion batteries and the role of key parameters—a review. Renew. Sustain. Energy Rev. 67, 491–506 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 69.

    Schmidt, T. S. et al. Additional emissions and cost from storing electricity in stationary battery systems. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.8b05313 (2019).

  • 70.

    Corchero, C., Gonzalez-Villafranca, S. & Sanmarti, M. European electric vehicle fleet: driving and charging data analysis. In Proc. 2014 IEEE International Electric Vehicle Conference (IEVC) 1–6 (IEEE, 2014).

  • 71.

    Canals Casals, L., Amante García, B. & Cremades, L. V. Electric vehicle battery reuse: preparing for a second life. J. Ind. Eng. Manage. https://doi.org/10.3926/jiem.2009 (2017).

  • 72.

    Harris, S. J., Harris, D. J. & Li, C. Failure statistics for commercial lithium ion batteries: a study of 24 pouch cells. J. Power Sources 342, 589–597 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 73.

    Baumhöfer, T., Brühl, M., Rothgang, S. & Sauer, D. U. Production caused variation in capacity aging trend and correlation to initial cell performance. J. Power Sources 247, 332–338 (2014).

    Article 

    Google Scholar
     

  • 74.

    Nissan, Sumitomo Corp. and 4R set up plant to recycle electric-car batteries. Nissan Global Newsroom (28 March 2018).

  • 75.

    Global EV Outlook 2019 (International Energy Agency, 2019).

  • 76.

    xStorage Home—Eaton Nissan Home Energy Storage (Nissan and Eaton, 2017).

  • 77.

    New power from old cells: Audi and Umicore develop closed loop battery recycling. Umicore Newsroom (26 October 2018).

  • 78.

    Bourguignon, D. Circular Economy Package: Four legislative Proposals on Waste (European Parliamentary Research Service, 2018).

  • 79.

    Hatzi-Hull, A. The ELV Directive: What Comes Next? (European Recycling Industries’ Confederation, 2018).

  • 80.

    Alonso, E., Gregory, J., Field, F. & Kirchain, R. Material availability and the supply chain: risks, effects, and responses. Environ. Sci. Technol. 41, 6649–6656 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 81.

    Mineral Commodity Summaries 2019 (USGS, 2019).

  • 82.

    Historical Statistics for Mineral and Material Commodities in the United States US Geological Survey Data Series 140 (USGS, 2017).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *