Co-designing electronics with microfluidics for more sustainable cooling


  • 1.

    Haensch, W. et al. Silicon CMOS devices beyond scaling. IBM J. Res. Develop. 50, 339–361 (2006).

    CAS 

    Google Scholar
     

  • 2.

    Kanduri, A. et al. A perspective on dark silicon. In The Dark Side of Silicon: Energy Efficient Computing in the Dark Silicon Era 3–20 (Springer, 2017).

  • 3.

    Hardavellas, N., Ferdman, M., Falsafi, B. & Ailamaki, A. Toward dark silicon in servers. IEEE Micro 31, 6–15 (2011).


    Google Scholar
     

  • 4.

    Nowak, E. J. Maintaining the benefits of CMOS scaling when scaling bogs down. IBM J. Res. Develop. 46, 169–180 (2002).


    Google Scholar
     

  • 5.

    Garimella, S. V. et al. Thermal challenges in next-generation electronic systems. IEEE Trans. Compon. Packag. Technol. 31, 801–815 (2008).


    Google Scholar
     

  • 6.

    Ohashi, H. Recent power devices trend. J. Inst. Electr. Eng. Jpn 122, 168–171 (2002).


    Google Scholar
     

  • 7.

    Digitalization And Energy 103–122 (International Energy Agency, 2017).

  • 8.

    Shehabi, A. et al. United States Data Center Energy Usage Report LBNL-1005775 https://www.osti.gov/biblio/1372902 (US DOE, Office of Scientific and Technical Information, 2016).

  • 9.

    Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 561, 163–166 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Agostini, B. et al. State of the art of high heat flux cooling technologies. Heat Transf. Eng. 28, 258–281 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Chu, R. C., Simons, R. E., Ellsworth, M. J., Schmidt, R. R. & Cozzolino, V. Review of cooling technologies for computer products. In IEEE Transactions on Device and Materials Reliability Vol. 4, 568–585 (IEEE, 2004).

  • 12.

    2015 Residential Energy Consumption Survey (RECS) https://www.eia.gov/consumption/residential/data/2015/ (US Energy Information Administration, 2015).

  • 13.

    DeOreo, W. B., Mayer, P., Dziegielewski, B. & Kiefer, J. Residential End Uses of Water Version 2 https://www.waterrf.org/resource/residential-end-uses-water-version-2 (Water Research Foundation, 2016).

  • 14.

    Annual Estimates of the Resident Population for Incorporated Places of 50,000 or More, Ranked by July 1, 2018 Population: April 1, 2010 to July 1, 2018 https://www.census.gov/data/tables/time-series/demo/popest/2010s-total-cities-and-towns.html (United States Census Bureau, 2019).

  • 15.

    All-Island Generation Capacity Statement 2018–2027 http://www.soni.ltd.uk/media/documents/Generation_Capacity_Statement_2018.pdf (EirGrid Group, 2018).

  • 16.

    Amano, H. et al. The 2018 GaN power electronics roadmap. J. Phys. D 51, 163001 (2018).

    ADS 

    Google Scholar
     

  • 17.

    Ohashi, H. et al. Power electronics innovation with next generation advanced power devices. IEICE Trans. Commun. E87-B, 3422–3429 (2004).


    Google Scholar
     

  • 18.

    Wei, T. et al. High-efficiency polymer-based direct multi-jet impingement cooling solution for high-power devices. IEEE Trans. Power Electron. 34, 6601–6612 (2019).

    ADS 

    Google Scholar
     

  • 19.

    Tuckerman, D. B. & Pease, R. F. W. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 2, 126–129 (1981).

    ADS 

    Google Scholar
     

  • 20.

    Mundinger, D. et al. Demonstration of high-performance silicon microchannel heat exchangers for laser diode array cooling. Appl. Phys. Lett. 53, 1030–1032 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Phillips, R. J. Microchannel heat sinks. Lincoln Lab. J. 1, 31–48 (1988).

    ADS 

    Google Scholar
     

  • 22.

    Harpole, G. M. & Eninger, J. E. Micro-channel heat exchanger optimization. In 1991 Proc. Seventh IEEE Semiconductor Thermal Measurement and Management Symp. 59–63 (IEEE, 1991).

  • 23.

    Copeland, D., Behnia, M. & Nakayama, W. Manifold microchannel heat sinks: isothermal analysis. IEEE Trans. Compon. Packag. Manuf. Technol. 20, 96–102 (1997).


    Google Scholar
     

  • 24.

    Copeland, D., Takahira, H., Nakayama, W. & Pak, B. C. Manifold microchannel heat sinks: theory and experiment. In Advances in Electronic Packaging Proc. Int. Intersociety Electronic Packaging Conference (INTERpack ’95) Vol. 10-2, 829–835, https://library.epfl.ch/beast?record=ebi01_prod001476708 (American Society of Mechanical Engineers, Electrical and Electronics Packaging Division, 1995).

  • 25.

    Copeland, D. Manifold microchannel heat sinks: numerical analysis. In Cooling and Thermal Design of Electronic Systems 1995 ASME International Mechanical Engineering Cong. Exp. Vol. 16, 111–116, https://library.epfl.ch/beast?record=ebi01_prod001583961 (American Society of Mechanical Engineers, Electrical and Electronics Packaging Division, 1995).

  • 26.

    Copeland, D., Behnia, M. & Nakayama, W. Manifold microchannel heat sinks: conjugate and extended models. Int. J. Microelectron. Packag. Mater. Technol. 1, 139–152 (1998).


    Google Scholar
     

  • 27.

    Mandel, R., Shooshtari, A. & Ohadi, M. A ‘2.5-D’ modeling approach for single-phase flow and heat transfer in manifold microchannels. Int. J. Heat Mass Transf. 126, 317–330 (2018).


    Google Scholar
     

  • 28.

    Ng, E. Y. K. & Poh, S. T. Investigative study of manifold microchannel heat sinks for electronic cooling design. J. Electron. Manuf. 9, 155–166 (1999).


    Google Scholar
     

  • 29.

    Ryu, J. H., Choi, D. H. & Kim, S. J. Three-dimensional numerical optimization of a manifold microchannel heat sink. Int. J. Heat Mass Transf. 46, 1553–1562 (2003).

    MATH 

    Google Scholar
     

  • 30.

    Sarangi, S., Bodla, K. K., Garimella, S. V. & Murthy, J. Y. Manifold microchannel heat sink design using optimization under uncertainty. Int. J. Heat Mass Transf. 69, 92–105 (2014).


    Google Scholar
     

  • 31.

    Cetegen, E., Dessiatoun, S. & Ohadi, M. Heat transfer analysis of force fed evaporation on microgrooved surfaces. In Proc. 6th Int. Conf. on Nanochannels, Microchannels, and Minichannels (ICNMM2008) Part A, 657–660, https://asmedigitalcollection.asme.org/ICNMM/proceedings-abstract/ICNMM2008/48345/657/335936 (2008).

  • 32.

    Kermani, E., Dessiatoun, S., Shooshtari, A. & Ohadi, M. M. Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells. In Proc. Electronic Components and Technology Conf. 453–459, https://ieeexplore.ieee.org/document/5074053 (IEEE, 2009).

  • 33.

    Drummond, K. P. et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics. Int. J. Heat Mass Transf. 117, 319–330 (2018).

    CAS 

    Google Scholar
     

  • 34.

    Back, D. et al. Design, fabrication, and characterization of a compact hierarchical manifold microchannel heat sink array for two-phase cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 9, 1291–1300 (2019).

    CAS 

    Google Scholar
     

  • 35.

    Escher, W., Brunschwiler, T., Michel, B. & Poulikakos, D. Experimental investigation of an ultrathin manifold microchannel heat sink for liquid-cooled chips. J. Heat Transfer 132, 081402 (2010).


    Google Scholar
     

  • 36.

    Schlottig, G. et al. Lid-integral cold-plate topology: integration, performance, and reliability. J. Electron. Packag. 138, 010906 (2016).


    Google Scholar
     

  • 37.

    Robinson, A. J., Kempers, R., Colenbrander, J., Bushnell, N. & Chen, R. A single phase hybrid micro heat sink using impinging micro-jet arrays and microchannels. Appl. Therm. Eng. 136, 408–418 (2018).


    Google Scholar
     

  • 38.

    Everhart, L. et al. Manifold microchannel cooler for direct backside liquid cooling of SiC power devices. In ASME 5th Int. Conf. on Nanochannels, Microchannels, and Minichannels 285–292 (ASME, 2007).

  • 39.

    Gambin, V. et al. Impingement cooled embedded diamond multiphysics co-design. In 2016 15th IEEE Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) 1518–1529 (IEEE, 2016).

  • 40.

    Drummond, K. P. et al. Evaporative intrachip hotspot cooling with a hierarchical manifold microchannel heat sink array. In 2016 15th IEEE Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) 307–315 (IEEE, 2016).

  • 41.

    Shekhar Sharma, C. et al. Energy efficient hotspot-targeted embedded liquid cooling of electronics. Appl. Energy 138, 414–422 (2015).


    Google Scholar
     

  • 42.

    Samalam, V. K. Convective heat transfer in microchannels. J. Electron. Mater. 18, 611–617 (1989).

    ADS 

    Google Scholar
     

  • 43.

    Weisberg, A., Bau, H. H. & Zemel, J. N. Analysis of microchannels for integrated cooling. Int. J. Heat Mass Transf. 35, 2465–2474 (1992).

    CAS 

    Google Scholar
     

  • 44.

    Ryu, J. H., Choi, D. H. & Kim, S. J. Numerical optimization of the thermal performance of a microchannel heat sink. Int. J. Heat Mass Transf. 45, 2823–2827 (2002).

    MATH 

    Google Scholar
     

  • 45.

    Shah, R. K. & London, A. L. Laminar Flow Forced Convection In Ducts : A Source Book For Compact Heat Exchanger Analytical Data (Academic Press, 1978).

  • 46.

    Nela, L., Kampitsis, G., Ma, J. & Matioli, E. Fast-switching tri-anode Schottky barrier diodes for monolithically integrated GaN-on-Si power circuits. IEEE Electron Device Lett. 41, 99–102 (2019).

    ADS 

    Google Scholar
     

  • 47.

    Mileham, J. R. et al. Wet chemical etching of AlN. Appl. Phys. Lett. 67, 1119 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Guo, W. et al. KOH based selective wet chemical etching of AlN, AlxGa1−xN, and GaN crystals: a way towards substrate removal in deep ultraviolet-light emitting diode. Appl. Phys. Lett. 106, 082110 (2015).

    ADS 

    Google Scholar
     

  • 49.

    Vicknesh, S., Tripathy, S., Lin, V. K. X., Wang, L. S. & Chua, S. J. Fabrication of deeply undercut GaN-based microdisk structures on silicon platforms. Appl. Phys. Lett. 90, 071906 (2007).

    ADS 

    Google Scholar
     

  • 50.

    van der Vegt, A. K. & Govaert, L. E. Polymeren: Van Keten Tot Kunstof (VSSD, 2003).

  • 51.

    Szczukiewicz, S., Borhani, N. & Thome, J. R. Fine-resolution two-phase flow heat transfer coefficient measurements of refrigerants in multi-microchannel evaporators. Int. J. Heat Mass Transf. 67, 913–929 (2013).

    CAS 

    Google Scholar
     

  • 52.

    Raghavan, S. & Redwing, J. M. Growth stresses and cracking in GaN films on (111) Si grown by metal–organic chemical-vapor deposition. I. AlN buffer layers. J. Appl. Phys. 98, 023514 (2005).

    ADS 

    Google Scholar
     

  • 53.

    Chapin, C. A., Miller, R. A., Dowling, K. M., Chen, R. & Senesky, D. G. InAlN/GaN high electron mobility micro-pressure sensors for high-temperature environments. Sens. Actuat. A 263, 216–223 (2017).

    CAS 

    Google Scholar
     

  • 54.

    Tan, X. et al. High performance AlGaN/GaN pressure sensor with a Wheatstone bridge circuit. Microelectron. Eng. 219, 111143 (2020).


    Google Scholar
     

  • 55.

    Sarua, A. et al. Thermal boundary resistance between GaN and substrate in AlGaN/GaN electronic devices. IEEE Trans. Electron Dev. 54, 3152–3158 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Turin, V. O. & Balandin, A. A. Performance degradation of GaN field-effect transistors due to thermal boundary resistance at GaN/substrate interface. Electron. Lett. 40, 81–83 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Kuzmík, J. et al. Transient thermal characterization of AlGaN/GaN HEMTs grown on silicon. IEEE Trans. Electron Dev. 52, 1698–1705 (2005).

    ADS 

    Google Scholar
     

  • 58.

    Steinke, M. E. & Kandlikar, S. G. Single-phase liquid heat transfer in plain and enhanced microchannels. In Proc. 4th Int. Conf. on Nanochannels, Microchannels and Minichannels (ICNMM2006) https://asmedigitalcollection.asme.org/ICNMM/proceedings-abstract/ICNMM2006/47608/943/323023 (ASME, 2006).

  • 59.

    Tosun, I. Modeling in Transport Phenomena (Elsevier, 2007).

  • 60.

    Hesselgreaves, J. E., Law, R. & Reay, D. A. Compact Heat Exchangers 2nd edn Vol. 1, Ch. 7, 275–360 (Butterworth-Heinemann, 2016).

  • 61.

    Ndao, S., Peles, Y. & Jensen, M. K. Multi-objective thermal design optimization and comparative analysis of electronics cooling technologies. Int. J. Heat Mass Transf. 52, 4317–4326 (2009).

    CAS 
    MATH 

    Google Scholar
     

  • 62.

    Brunschwiler, T. et al. Interlayer cooling potential in vertically integrated packages. In Microsystem Technologies Vol. 15, 57–74 (Springer, 2009).

  • 63.

    Kandlikar, S. G. & Upadhye, H. R. Extending the heat flux limit with enhanced microchannels in direct single phase cooling of computer chips. In 21st Ann. IEEE Symp. on Semiconductor Thermal Measurement and Management 8–15 (IEEE, 2005).

  • 64.

    Colgan, E. G. et al. A practical implementation of silicon microchannel coolers for high power chips. In 21st Ann. IEEE Symp. on Semiconductor Thermal Measurement and Management 1–7 (IEEE, 2005).

  • 65.

    Jung, K. W. et al. Embedded cooling with 3D manifold for vehicle power electronics application: single-phase thermal-fluid performance. Int. J. Heat Mass Transf. 130, 1108–1119 (2019).

    CAS 

    Google Scholar
     

  • 66.

    Ohadi, M., Choo, K., Dessiatoun, S. & Cetegen, E. Next Generation Microchannel Heat Exchangers 1–111 (Springer, 2013).

  • 67.

    Han, Y., Lau, B. L., Tang, G., Zhang, X. & Rhee, D. M. W. Si-based hybrid microcooler with multiple drainage microtrenches for high heat flux cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 7, 50–57 (2017).

    CAS 

    Google Scholar
     

  • 68.

    Han, Y., Lau, B. L., Zhang, X., Leong, Y. C. & Choo, K. F. Thermal management of hotspots with a microjet-based hybrid heat sink for GaN-on-Si devices. IEEE Trans. Compon. Packag. Manuf. Technol. 4, 1441–1450 (2014).

    CAS 

    Google Scholar
     

  • 69.

    Ditri, J., Hahn, J., Cadotte, R., McNulty, M. & Luppa, D. Embedded cooling of high heat flux electronics utilizing distributed microfluidic impingement jets. In ASME 2015 Int. Tech. Conf. Exhib. on Packaging and Integration of Electronic and Photonic Microsystems(InterPACK 2015)/ASME 2015 13th Int. Conf. on Nanochannels, Microchannels, and Minichannels Vol. 3, T10A014, https://library.epfl.ch/beast?record=ebi01_prod010609314 (ASME, 2015).

  • 70.

    Natarajan, G. & Bezama, R. J. Microjet cooler with distributed returns. Heat Transf. Eng. 28, 779–787 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 71.

    Wei, T. et al. High efficiency direct liquid jet impingement cooling of high power devices using a 3D-shaped polymer cooler. In Technical Digest International Electron Devices Meeting (IEDM) 32.5.1–32.5.4 https://ieeexplore.ieee.org/document/8268487 (IEEE, 2018).

  • 72.

    Dzuba, J. et al. AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism. Appl. Phys. Lett. 107, 122102 (2015).

    ADS 

    Google Scholar
     

  • 73.

    Ma, J., Santoruvo, G., Tandon, P. & Matioli, E. Enhanced electrical performance and heat dissipation in AlGaN/GaN Schottky barrier diodes using hybrid tri-anode structure. IEEE Trans. Electron Devices 63, 3614–3619 (2016).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *