Controlled coupling of an ultrapotent auristatin warhead to cetuximab yields a next-generation antibody-drug conjugate for EGFR-targeted therapy of KRAS mutant pancreatic cancer


  • 1.

    Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    Article 

    Google Scholar
     

  • 2.

    Thomas, A., Teicher, B. A. & Hassan, R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 17, e254–e262 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Disco. 16, 315–337 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Lambert, J. M. & Morris, C. Q. Antibody-Drug Conjugates (ADCs) for personalized treatment of solid tumors: a review. Adv. Ther. 34, 1015–1035 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Wang, L., Amphlett, G., Blättler, W. A., Lambert, J. M. & Zhang, W. Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci. 14, 2436–2446 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Alley, S. C., Benjamin, D. R., Jeffrey, S. C., Okeley, N. M., Meyer, D. L., Sanderson, R. J. et al. Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem. 19, 759–765 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Lyon, R. P., Setter, J. R., Bovee, T. D., Doronina, S. O., Hunter, J. H., Anderson, M. E. et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nat. Biotechnol. 32, 1059–1062 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Behrens, C. R. & Liu, B. Methods for site-specific drug conjugation to antibodies. MAbs 6, 46–53 (2014).

    Article 

    Google Scholar
     

  • 9.

    Agarwal, P. & Bertozzi, C. R. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development. Bioconjug. Chem. 26, 176–192 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Chudasama, V., Maruani, A. & Caddick, S. Recent advances in the construction of antibody-drug conjugates. Nat. Chem. 8, 114–119 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Forte, N., Chudasama, V. & Baker, J. R. Homogeneous antibody-drug conjugates via site-selective disulfide bridging. Drug Discov. Today Technol. 30, 11–20 (2018).

    Article 

    Google Scholar
     

  • 12.

    Maruani, A., Smith, M. E., Miranda, E., Chester, K. A., Chudasama, V. & Caddick, S. A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat. Commun. 6, 6645 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Lee, M. T. W., Maruani, A., Baker, J. R., Caddick, S. & Chudasama, V. Next-generation disulfide stapling: reduction and functional re-bridging all in one. Chem. Sci. 7, 799–802 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Lee, M. T. W., Maruani, A., Richards, D. A., Baker, J. R., Caddick, S. & Chudasama, V. Enabling the controlled assembly of antibody conjugates with a loading of two modules without antibody engineering. Chem. Sci. 8, 2056–2060 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Robinson, E., Nunes, J. P. M., Vassilevab, V., Maruani, A., Nogueira, J. C. F., Smith, M. E. B. et al. Pyridazinediones deliver potent, stable, targeted and efficacious antibody-drug conjugates (ADCs) with a controlled loading of 4 drugs per antibody. RSC Adv. 7, 9073–9077 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Jacqmin, P., Snoeck, E., van Schaick, E. A., Gieschke, R., Pillai, P., Steimer, J. L. et al. Modelling response time profiles in the absence of drug concentrations: definition and performance evaluation of the K-PD model. J. Pharmacokinet. Pharmacodyn. 34, 57–85 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Ali, S., El-Rayes, B. F., Sarkar, F. H. & Philip, P. A. Simultaneous targeting of the epidermal growth factor receptor and cyclooxygenase-2 pathways for pancreatic cancer therapy. Mol. Cancer Ther. 4, 1943–1951 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Ioannou, N., Dalgleish, A. G., Seddon, A. M., Mackintosh, D., Guertler, U., Solca, F. et al. Anti-tumour activity of afatinib, an irreversible ErbB family blocker, in human pancreatic tumour cells. Br. J. Cancer 105, 1554–1562 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    McMichael, E. L., Jaime-Ramirez, A. C., Guenterberg, K. D., Luedke, E., Atwal, L. S., Campbell, A. R. et al. IL-21 enhances natural killer cell response to cetuximab-coated pancreatic tumor cells. Clin. Cancer Res. 23, 489–502 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Karapetis, C. S., Khambata-Ford, S., Jonker, D. J., O’Callaghan, C. J., Tu, D., Tebbutt, N. C. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Gabrielsson, J., Andersson, R., Jirstrand, M. & Hjorth, S. Dose-response-time data analysis: an underexploited trinity. Pharm. Rev. 71, 89–122 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Li, Z., Wang, M., Yao, X., Luo, W., Qu, Y., Yu, D. et al. Development of a novel EGFR-Targeting antibody-drug conjugate for pancreatic cancer therapy. Target Oncol. 14, 93–105 (2019).

    Article 

    Google Scholar
     

  • 23.

    Junutula, J. R., Raab, H., Clark, S., Bhakta, S., Leipold, D. D., Weir, S. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol. 26, 925–932 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Axup, J. Y., Bajjuri, K. M., Ritland, M., Hutchins, B. M., Kim, C. H., Kazane, S. A. et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl Acad. Sci. USA 109, 16101–16106 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Zhou, Q., Stefano, J. E., Manning, C., Kyazike, J., Chen, B., Gianolio, D. A. et al. Site-specific antibody-drug conjugation through glycoengineering. Bioconjug. Chem. 25, 510–520 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Strop, P., Tran, T. T., Dorywalska, M., Delaria, K., Dushin, R., Wong, O. K. et al. RN927C, a site-specific Trop-2 Antibody-Drug Conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models. Mol. Cancer Ther. 15, 2698–2708 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Ueda, S., Ogata, S., Tsuda, H., Kawarabayashi, N., Kimura, M., Sugiura, Y. et al. The correlation between cytoplasmic overexpression of epidermal growth factor receptor and tumor aggressiveness: poor prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas 29, e1–e8 (2004).

    Article 

    Google Scholar
     

  • 28.

    Cascinu, S., Berardi, R., Labianca, R., Siena, S., Falcone, A., Aitini, E. et al. Cetuximab plus gemcitabine and cisplatin compared with gemcitabine and cisplatin alone in patients with advanced pancreatic cancer: a randomised, multicentre, phase II trial. Lancet Oncol. 9, 39–44 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Kullmann, F., Hollerbach, S., Dollinger, M. M., Harder, J., Fuchs, M., Messmann, H. et al. Cetuximab plus gemcitabine/oxaliplatin (GEMOXCET) in first-line metastatic pancreatic cancer: a multicentre phase II study. Br. J. Cancer 100, 1032–1036 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Philip, P. A., Benedetti, J., Corless, C. L., Wong, R., O’Reilly, E. M., Flynn, P. J. et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J. Clin. Oncol. 28, 3605–3610 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Lièvre, A., Bachet, J. B., Le Corre, D., Boige, V., Landi, B., Emile, J. F. et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 66, 3992–3995 (2006).

    Article 

    Google Scholar
     

  • 32.

    Fujimori, K., Covell, D. G., Fletcher, J. E. & Weinstein, J. N. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab’)2, and Fab in tumors. Cancer Res. 49, 5656–5663 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Okeley, N. M., Miyamoto, J. B., Zhang, X., Sanderson, R. J., Benjamin, D. R., Sievers, E. L. et al. Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin. Cancer Res. 16, 888–897 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Cilliers, C., Guo, H., Liao, J., Christodolu, N. & Thurber, G. M. Multiscale modeling of antibody-drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J. 18, 1117–1130 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Provenzano, P. P., Cuevas, C., Chang, A. E., Goel, V. K., Von Hoff, D. D. & Hingorani, S. R. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21, 418–429 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Roy Chaudhuri, T., Straubinger, N. L., Pitoniak, R. F., Hylander, B. L., Repasky, E. A., Ma, W. W. et al. Tumor-priming smoothened inhibitor enhances deposition and efficacy of cytotoxic nanoparticles in a pancreatic cancer model. Mol. Cancer Ther. 15, 84–93 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Vennin, C., Chin, V. T., Warren, S. C., Lucas, M. C., Herrmann, D., Magenau, A. et al. Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci. Transl. Med. 9, eaai8504 (2017).

    Article 

    Google Scholar
     

  • 39.

    Wang, J., Chan, D. K. W., Sen, A., Ma, W. W. & Straubinger, R. M. Tumor priming by SMO inhibition enhances antibody delivery and efficacy in a pancreatic ductal adenocarcinoma model. Mol. Cancer Ther. 18, 2074–2084 (2019).

    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *