Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics


  • 1.

    Chang, Y.-W. et al. Electromigration mechanism of failure in flip-chip solder joints based on discrete void formation. Sci. Rep. 7, 17950 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Elakkiya, R. et al. Reliability enhancement of a power semiconductor with optimized solder layer thickness. IEEE Trans. Power Electron. 35, 6397–6404 (2020).


    Google Scholar
     

  • 3.

    Sayyadi, R. & Naffakh-Moosavy, H. The role of intermetallic compounds in controlling the microstructural, physical and mechanical properties of Cu–[Sn–Ag–Cu–Bi]–Cu solder joints. Sci. Rep. 9, 8389 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Branch Kelly, M., Kirubanandham, A. & Chawla, N. Mechanisms of thermal cycling damage in polycrystalline Sn-rich solder joints. Mater. Sci. Eng. A 771, 138614 (2020).

    CAS 

    Google Scholar
     

  • 5.

    Samavatian, V., Iman-Eini, H., Avenas, Y. & Samavatian, M. Effects of creep failure mechanisms on thermo-mechanical reliability of solder joints in power semiconductors. IEEE Trans. Power Electron. 35, 8956–8964 (2020).

    ADS 

    Google Scholar
     

  • 6.

    Baber, F. & Guven, I. Solder joint fatigue life prediction using peridynamic approach. Microelectron. Reliab. 79, 20–31 (2017).

    CAS 

    Google Scholar
     

  • 7.

    Marbut, C. J., Montazeri, M. & Huitink, D. R. Rapid solder interconnect fatigue life test methodology for predicting thermomechanical reliability. IEEE Trans. Device Mater. Reliab. 18, 412–421 (2018).

    CAS 

    Google Scholar
     

  • 8.

    Samavatian, V., Iman-Eini, H. & Avenas, Y. An efficient online time-temperature-dependent creep-fatigue rainflow counting algorithm. Int. J. Fatigue 116, 284–292 (2018).


    Google Scholar
     

  • 9.

    Chen, G., Hu, T., Xie, M., Yang, J. & Xu, W. A new unified constitutive model for SAC305 solder under thermo-mechanical loading. Mech. Mater. 138, 103170 (2019).


    Google Scholar
     

  • 10.

    Steinhorst, P., Poller, T. & Lutz, J. Approach of a physically based lifetime model for solder layers in power modules. Microelectron. Reliab. 53, 1199–1202 (2013).


    Google Scholar
     

  • 11.

    Durga, A., Wollants, P. & Moelans, N. Phase-field study of IMC growth in Sn–Cu/Cu solder joints including elastoplastic effects. Acta Mater. 188, 241–258 (2020).

    CAS 

    Google Scholar
     

  • 12.

    Samavatian, M., Samavatian, V., Moayeri, M. & Babaei, H. Effect of stress triaxiality on damage evolution of porous solder joints in IGBT Discretes. J. Manuf. Process. 32, 57–64 (2018).


    Google Scholar
     

  • 13.

    Long, X., He, X. & Yao, Y. An improved unified creep-plasticity model for SnAgCu solder under a wide range of strain rates. J. Mater. Sci. 52, 6120–6137 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Long, X., Chen, Z., Wang, W., Fu, Y. & Wu, Y. Parameterized Anand constitutive model under a wide range of temperature and strain rate: experimental and theoretical studies. J. Mater. Sci. 55, 10811–10823 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Lee, C.-H., Wu, K.-C. & Chiang, K.-N. A novel acceleration-factor equation for packaging-solder joint reliability assessment at different thermal cyclic loading rates. J. Mech. 33, 35–40 (2017).


    Google Scholar
     

  • 16.

    Wang, W., Chen, Z., Wang, S. & Long, X. Mechanics-based acceleration for estimating thermal fatigue life of electronic packaging structure. Microelectron. Reliab. 107, 113616 (2020).

    CAS 

    Google Scholar
     

  • 17.

    Ren, G., Collins, M. N., Punch, J., Dalton, E. & Coyle, R. Chapter 5 – Pb-free solder—microstructural, material reliability, and failure relationship (eds. Makhlouf, A. S. H. & Aliofkhazraei, M.) 107–151 (Butterworth-Heinemann, 2020).

  • 18.

    Hamasha, S., Qasaimeh, A., Jaradat, Y. & Borgesen, P. Correlation between solder joint fatigue life and accumulated work in isothermal cycling. . IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1292–1299 (2015).

    CAS 

    Google Scholar
     

  • 19.

    Raj, A. et al. Thermal shock reliability of isothermally aged doped lead-free solder with semiparametric estimation. . IEEE Trans. Compon. Packag. Manuf. Technol. 9, 1082–1093 (2019).

    CAS 

    Google Scholar
     

  • 20.

    Ma, H., Ahmad, M. & Liu, K. Reliability of lead-free solder joints under a wide range of thermal cycling conditions. . IEEE Trans. Compon. Packag. Manuf. Technol. 1, 1965–1974 (2011).

    CAS 

    Google Scholar
     

  • 21.

    Dalton, E., Ren, G., Punch, J. & Collins, M. N. Accelerated temperature cycling induced strain and failure behaviour for BGA assemblies of third generation high Ag content Pb-free solder alloys. Mater. Des. 154, 184–191 (2018).

    CAS 

    Google Scholar
     

  • 22.

    Berni, R., Catelani, M., Fiesoli, C. & Scarano, V. L. A comparison of alloy-surface finish combinations considering different component package types and their impact on soldering reliability. IEEE Trans. Reliab. 65, 272–281 (2016).


    Google Scholar
     

  • 23.

    Jiao, H., Liu, Y., Sun, F., Wu, N. & Fang, H. Solder interconnects reliability subjected to thermal-vibration coupling loading. J. Mater. Sci. Mater. Electron. 30, 11482–11492 (2019).

    CAS 

    Google Scholar
     

  • 24.

    Al Athamneh, R., Hani, D. B., Ali, H. & Hamasha, S. Reliability modeling for aged SAC305 solder joints cycled in accelerated shear fatigue test. Microelectron. Reliab. 104, 113507 (2020).

    CAS 

    Google Scholar
     

  • 25.

    Basit, M. M. et al. Thermal cycling reliability of aged PBGA assemblies – comparison of Weibull failure data and finite element model predictions. in 2015 IEEE 65th electronic components and technology conference (ECTC) 106–117 (IEEE, 2015).

  • 26.

    Handbook, M. S. MIL-HDBK-217F. Reliab. Predict. Electron. Equipment, US Dep. Def. (1995).

  • 27.

    1413.1‐2002, I. S. IEEE guide for selecting and using reliability predictions based on IEEE 1413. (2003).

  • 28.

    Chen, I. & Bastani, F. B. Effect of artificial-intelligence planning-procedures on system reliability. IEEE Trans. Reliab. 40, 364–369 (1991).

    MATH 

    Google Scholar
     

  • 29.

    Dragičević, T., Wheeler, P. & Blaabjerg, F. Artificial intelligence aided automated design for reliability of power electronic systems. IEEE Trans. Power Electron. 34, 7161–7171 (2019).

    ADS 

    Google Scholar
     

  • 30.

    Labed, I. & Labed, D. Extreme learning machine-based alleviation for overloaded power system. IET Gener. Transm. Distrib. 13, 5058–5070 (2019).


    Google Scholar
     

  • 31.

    Cremer, J. L., Konstantelos, I. & Strbac, G. From optimization-based machine learning to interpretable security rules for operation. IEEE Trans. Power Syst. 34, 3826–3836 (2019).

    ADS 

    Google Scholar
     

  • 32.

    Pozo, B., Garate, I. J., Ferreiro, S., Fernandez, I. & Fernandez de Gorostiza, E. Supercapacitor electro-mathematical and machine learning modelling for low power applications. Electronics 7, 44 (2018).


    Google Scholar
     

  • 33.

    Zhang, D., Han, X. & Deng, C. Review on the research and practice of deep learning and reinforcement learning in smart grids. CSEE J. Power Energy Syst. 4, 362–370 (2018).


    Google Scholar
     

  • 34.

    Sung, Y. & Robert, J. Machine learning framework for predicting reliability of solder joints. Solder. Surf. Mt. Technol. 32, 82–92 (2019).


    Google Scholar
     

  • 35.

    Ogbomo, O. O., Amalu, E. H., Ekere, N. N. & Olagbegi, P. O. Effect of operating temperature on degradation of solder joints in crystalline silicon photovoltaic modules for improved reliability in hot climates. Sol. Energy 170, 682–693 (2018).

    ADS 

    Google Scholar
     

  • 36.

    Han, Y. D. et al. A modified constitutive model of Ag nanoparticle-modified graphene/Sn–Ag–Cu/Cu solder joints. Mater. Sci. Eng. A 777, 139080 (2020).

    CAS 

    Google Scholar
     

  • 37.

    Park, B.-G., Myung, W.-R., Lee, C.-J. & Jung, S.-B. Mechanical, electrical, and thermal reliability of Sn-58wt.%Bi solder joints with Ag-decorated MWCNT for LED package component during aging treatment. Compos. Part B Eng. 182, 107617 (2020).

    CAS 

    Google Scholar
     

  • 38.

    Hah, J. et al. Comprehensive comparative analysis of microstructure of Sn–Ag–Cu (SAC) solder joints by traditional reflow and thermo-compression bonding (TCB) processes. Materialia 6, 100327 (2019).


    Google Scholar
     

  • 39.

    Samavatian, V. A systematic approach to reliability assessment of DC–DC power electronic converters (2019).

  • 40.

    Zarmai, M. T., Ekere, N. N., Oduoza, C. F. & Amalu, E. H. Optimization of thermo-mechanical reliability of solder joints in crystalline silicon solar cell assembly. Microelectron. Reliab. 59, 117–125 (2016).

    CAS 

    Google Scholar
     

  • 41.

    Durand, C., Klingler, M., Bigerelle, M. & Coutellier, D. Solder fatigue failures in a new designed power module under Power Cycling. Microelectron. Reliab. 66, 122–133 (2016).

    CAS 

    Google Scholar
     

  • 42.

    Cavallaro, D., Greco, R. & Bazzano, G. Effect of solder material thickness on Power MOSFET reliability by Electro-thermo-Mechanical Simulations. Microelectron. Reliab. 88–90, 1168–1171 (2018).


    Google Scholar
     

  • 43.

    Le, V. N., Benabou, L., Etgens, V. & Tao, Q. B. Finite element analysis of the effect of process-induced voids on the fatigue lifetime of a lead-free solder joint under thermal cycling. Microelectron. Reliab. 65, 243–254 (2016).

    CAS 

    Google Scholar
     

  • 44.

    Surendar, A., Samavatian, V., Maseleno, A., Ibatova, A. Z. & Samavatian, M. Effect of solder layer thickness on thermo-mechanical reliability of a power electronic system. J. Mater. Sci. Mater. Electron. 29, 15249–15258 (2018).

    CAS 

    Google Scholar
     

  • 45.

    Ghodke, N., Kumbhakarna, D., Nakanekar, S. & Tonapi, S. Fatigue life prediction for solder interconnects in IGBT modules by using the successive initiation method. in Fourteenth intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm) 598–604 (IEEE, 2014).

  • 46.

    Long, X., Jia, Q. P., Li, Z. & Wen, S. X. Reverse analysis of constitutive properties of sintered silver particles from nanoindentations. Int. J. Solids Struct. 191–192, 351–362 (2020).


    Google Scholar
     

  • 47.

    Long, X., Hu, B., Feng, Y., Chang, C. & Li, M. Correlation of microstructure and constitutive behaviour of sintered silver particles via nanoindentation. Int. J. Mech. Sci. 161–162, 105020 (2019).


    Google Scholar
     

  • 48.

    Tikale, S. & Prabhu, K. N. Development of low-silver content SAC0307 solder alloy with Al2O3 nanoparticles. Mater. Sci. Eng. A 787, 139439 (2020).

    CAS 

    Google Scholar
     

  • 49.

    Long, X. et al. Strain rate sensitivity of sintered silver nanoparticles using rate-jump indentation. Int. J. Mech. Sci. 140, 60–67 (2018).


    Google Scholar
     

  • 50.

    Wernicki, E. & Gu, Z. Effect of Sn nanoparticle additions on thermal properties of Sn-Ag-Cu lead-free solder paste. Thermochim. Acta 690, 178642 (2020).

    CAS 

    Google Scholar
     

  • 51.

    Long, X., Xu, J., Wang, S., Tang, W. & Chang, C. Understanding the impact response of lead-free solder at high strain rates. Int. J. Mech. Sci. 172, 105416 (2020).


    Google Scholar
     

  • 52.

    Kang, R., Gong, W. & Chen, Y. Model-driven degradation modeling approaches: investigation and review. Chin. J. Aeronaut. 33, 1137–1153 (2020).


    Google Scholar
     

  • 53.

    Akbari, S., Lövberg, A., Tegehall, P.-E., Brinkfeldt, K. & Andersson, D. Effect of PCB cracks on thermal cycling reliability of passive microelectronic components with single-grained solder joints. Microelectron. Reliab. 93, 61–71 (2019).

    CAS 

    Google Scholar
     

  • 54.

    Magnien, J. et al. Reliability and failure analysis of solder joints in flip chip LEDs via thermal impedance characterisation. Microelectron. Reliab. 76–77, 601–605 (2017).


    Google Scholar
     

  • 55.

    Samavatian, V., Avenas, Y. & Iman-Eini, H. Mutual and self-aging effects of power semiconductors on the thermal behaviour of DC-DC boost power converter. Microelectron. Reliab. 88–90, 493–499 (2018).


    Google Scholar
     

  • 56.

    Lemaitre, J. & Desmorat, R. Engineering damage mechanics: ductile, creep, fatigue and brittle failures (Springer, Berlin, 2005).


    Google Scholar
     

  • 57.

    Held, M., Jacob, P., Nicoletti, G., Scacco, P. & Poech, M.-. Fast power cycling test of IGBT modules in traction application. in Proceedings of second international conference on power electronics and drive systems 425–430 (IEEE, 1997).

  • 58.

    Liu, D. & Pons, D. J. Development of a unified creep-fatigue equation including heat treatment. Fatigue Fract. Eng. Mater. Struct. 41, 170–182 (2018).


    Google Scholar
     

  • 59.

    Bayerer, R., Herrmann, T., Licht, T., Lutz, J. & Feller, M. Model for Power Cycling lifetime of IGBT Modules-various factors influencing lifetime. in 5th international conference on integrated power electronics systems 1–6 (IEEE, 2008).

  • 60.

    Kollerov, M., Lukina, E., Gusev, D., Mason, P. & Wagstaff, P. Impact of material structure on the fatigue behaviour of NiTi leading to a modified Coffin-Manson equation. Mater. Sci. Eng. A 585, 356–362 (2013).

    CAS 

    Google Scholar
     

  • 61.

    Puttlitz, K. J. & Stalter, K. A. Handbook of lead-free solder technology for microelectronic assemblies (CRC Press, Baco Raton, 2004).


    Google Scholar
     

  • 62.

    Fan, X., Rasier, G. & Vasudevan, V. S. Effects of dwell time and ramp rate on lead-free solder joints in FCBGA packages. in Proceedings electronic components and technology, 2005. ECTC’05. 901–906 (IEEE, 2005).

  • 63.

    Otiaba, K. C., Okereke, M. I. & Bhatti, R. S. Numerical assessment of the effect of void morphology on thermo-mechanical performance of solder thermal interface material. Appl. Therm. Eng. 64, 51–63 (2014).

    CAS 

    Google Scholar
     

  • 64.

    Chen, Y., Jin, Y. & Kang, R. Microelectronics Reliability Coupling damage and reliability modeling for creep and fatigue of solder joint. Microelectron. Reliab. 75, 233–238 (2017).

    CAS 

    Google Scholar
     

  • 65.

    Amalu, E. H. & Ekere, N. N. High temperature reliability of lead-free solder joints in a flip chip assembly. J. Mater. Process. Technol. 212, 471–483 (2012).

    CAS 

    Google Scholar
     

  • 66.

    Rajaguru, P., Lu, H., Bailey, C., Ortiz-Gonzalez, J. & Alatise, O. Evaluation of the impact of the physical dimensions and material of the semiconductor chip on the reliability of Sn3.5Ag solder interconnect in power electronic module: a finite element analysis perspective. Microelectron. Reliab. 68, 77–85 (2017).

    CAS 

    Google Scholar
     

  • 67.

    Ma, H. & Suhling, J. C. A review of mechanical properties of lead-free solders for electronic packaging. J. Mater. Sci. 44, 1141–1158 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 68.

    Darveaux, R. & Reichman, C. Mechanical properties of lead-free solders. in 2007 Proceedings of the 57th electronic components and technology conference 695–706 (IEEE, 2007).

  • 69.

    Samavatian, V., Iman-Eini, H., Avenas, Y. & Shemehsavar, S. Reciprocal and self-aging effects of power components on reliability of DC–DC boost converter with coupled and decoupled thermal structures. . IEEE Trans. Compon. Packag. Manuf. Technol. 9, 2506–2513 (2019).

    CAS 

    Google Scholar
     

  • 70.

    Avenas, Y., Dupont, L., Baker, N., Zara, H. & Barruel, F. Condition monitoring: a decade of proposed techniques. IEEE Ind. Electron. Mag. 9, 22–36 (2015).


    Google Scholar
     

  • 71.

    Avenas, Y., Dupont, L. & Khatir, Z. Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters – A review. IEEE Trans. Power Electron. 27, 3081–3092 (2012).

    ADS 

    Google Scholar
     

  • 72.

    Xiong, J., Shi, S.-Q. & Zhang, T.-Y. A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mater. Des. 187, 108378 (2020).

    CAS 

    Google Scholar
     

  • 73.

    Tang, Z. & Fishwick, P. A. Feedforward neural nets as models for time series forecasting. ORSA J. Comput. 5, 374–385 (1993).

    MATH 

    Google Scholar
     

  • 74.

    Sun, S., Ouyang, R., Zhang, B. & Zhang, T.-Y. Data-driven discovery of formulas by symbolic regression. MRS Bull. 44, 559–564 (2019).


    Google Scholar
     

  • 75.

    Yang, Z. et al. Establishing structure-property localization linkages for elastic deformation of three-dimensional high contrast composites using deep learning approaches. Acta Mater. 166, 335–345 (2019).

    CAS 

    Google Scholar
     

  • 76.

    Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. in Proceedings of the 27th international conference on machine learning (ICML-10) 807–814 (ACM, 2010).

  • 77.

    Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 61, 85–117 (2015).

    PubMed 

    Google Scholar
     

  • 78.

    Syed, A. Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints. in 2004 Proceedings. 54th electronic components and technology conference (IEEE Cat. No.04CH37546) 737–746 (IEEE, 2004).

  • 79.

    Amalu, E. H. & Ekere, N. N. Modelling evaluation of Garofalo-Arrhenius creep relation for lead-free solder joints in surface mount electronic component assemblies. J. Manuf. Syst. 39, 9–23 (2016).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *