COVID-19 and food security in Sub-Saharan Africa: implications of lockdown during agricultural planting seasons


  • 1.

    Gilbert, M. et al. Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study. Lancet 395, 871–877 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Anoba, I. B. How a population of 4.2 billion could impact Africa by 2100: the possible economic. The SAIS Review of International Affairs (Johns Hopkins University, 2019).

  • 3.

    United Nations, P. D. World Population Prospects 2019 (United Nations, 2019).

  • 4.

    Shimeles, A., Verdier-Chouchane, A. & Boly, A. Building a Resilient and Sustainable Agriculture in Sub-Saharan Africa 1–12 (Springer, 2018).

  • 5.

    Rippke, U. et al. Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nat. Clim. Change 6, 605–609 (2016).

    Article 

    Google Scholar
     

  • 6.

    Mechiche-Alami, A. & Abdi, A. M. Agricultural productivity in relation to climate and cropland management in West Africa. Sci. Rep. 10, 1–10 (2020).

    Article 

    Google Scholar
     

  • 7.

    Barbier, E. B. & Hochard, J. P. Land degradation and poverty. Nat. Sustain. 1, 623–631 (2018).

    Article 

    Google Scholar
     

  • 8.

    Kotir, J. H. Climate change and variability in Sub-Saharan Africa: a review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 13, 587–605 (2011).

    Article 

    Google Scholar
     

  • 9.

    Karekezi, S. Poverty and energy in Africa—a brief review. Energy Policy 30, 915–919 (2002).

    Article 

    Google Scholar
     

  • 10.

    Akinseye, F. M., Agele, S. O., Traore, P., Adam, M. & Whitbread, A. M. Evaluation of the onset and length of growing season to define planting date—‘a case study for Mali (West Africa)’. Theor. Appl. Climatol. 124, 973–983 (2016).

    Article 

    Google Scholar
     

  • 11.

    Nyagumbo, I., Mkuhlani, S., Mupangwa, W. & Rodriguez, D. Planting date and yield benefits from conservation agriculture practices across Southern Africa. Agric. Syst. 150, 21–33 (2017).

    Article 

    Google Scholar
     

  • 12.

    Srivastava, A. K., Mboh, C. M., Gaiser, T., Webber, H. & Ewert, F. Effect of sowing date distributions on simulation of maize yields at regional scale—a case study in Central Ghana, West Africa. Agric. Syst. 147, 10–23 (2016).

    Article 

    Google Scholar
     

  • 13.

    Waha, K. et al. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Glob. Environ. Change 23, 130–143 (2013).

    Article 

    Google Scholar
     

  • 14.

    FAO, I. & UNICEF. WFP and WHO. 2018. The State of Food Security and Nutrition in the World 2018. Building climate resilience for food security and nutrition. Rome, FAO (2019).

  • 15.

    Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).

    Article 

    Google Scholar
     

  • 16.

    Africa CDC. Africa CDC and Member States, COVID-19 Scientific and Public Health Policy Update, 06 April 2020. COVID-19 Scientific and Public Health Policy Update https://africacdc.org/download/covid-19-science-and-public-health-policy-update-7-april-2020/ (2020).

  • 17.

    Fernandes, N. Economic effects of coronavirus outbreak (COVID-19) on the world economy. Available at SSRN 3557504 (2020).

  • 18.

    Ekpa, O., Palacios-Rojas, N., Kruseman, G., Fogliano, V. & Linnemann, A. R. Sub-Saharan African maize-based foods: technological perspectives to increase the food and nutrition security impacts of maize breeding programmes. Glob. Food Secur. 17, 48–56 (2018).

    Article 

    Google Scholar
     

  • 19.

    Chauhan, B. S., Jabran, K. & Mahajan, G. Rice Production Worldwide. Vol. 247 (Springer, 2017).

  • 20.

    Niang, A. et al. Variability and determinants of yields in rice production systems of West Africa. Field Crops Res. 207, 1–12 (2017).

    Article 

    Google Scholar
     

  • 21.

    Nzomoi, J. & Anderson, I. The Rice Market in East Africa (No. 309-2016-5150) (2013).

  • 22.

    Balasubramanian, V., Sie, M., Hijmans, R. J. & Otsuka, K. Increasing rice production in sub-Saharan Africa: challenges and opportunities. Adv. Agron. 94, 55–133 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Senthilkumar, K. et al. Quantifying rice yield gaps and their causes in Eastern and Southern Africa. J. Agron. Crop Sci. 206, 478–490 (2020).

    Article 

    Google Scholar
     

  • 24.

    Arumugam, K., Nagai, T. & Haneishi, Y. Policy options for galvanizing Africa’s rice sector against impacts of COVID-19. World Develop. 136, 105126 (2020).

  • 25.

    Willy, D. K., Yacouba, D., Hippolyte, A., Francis, N., Michael, W., & Tesfamicheal, W. “COVID-19 Pandemic in Africa: Impacts on Agriculture and Emerging Policy Responses for Adaptation and Resilience Building” (2020). https://www.aatf-africa.org/wp-content/uploads/2020/06/TAAT-Policy-Working-Paper-on-COVID19_FINAL-for-Dissemination_May-2020.pdf.

  • 26.

    Harris, T. & Consulting, T. Africa Agriculture Status Report 2014: Climate Change and Smallholder Agriculture in Sub-saharan Africa (Alliance for a Green Revolution in Africa (AGRA), 2014).

  • 27.

    Brenton, P. & Chemutai, V. Trade Responses to the COVID-19 Crisis in Africa, World Bank (2020).

  • 28.

    Yaya, S., Otu, A. & Labonté, R. Globalisation in the time of COVID-19: repositioning Africa to meet the immediate and remote challenges. Glob. Health 16, 1–7 (2020).

    Article 

    Google Scholar
     

  • 29.

    Ainsworth, E. A. et al. Next generation of elevated [CO2] experiments with crops: a critical investment for feeding the future world. Plant Cell Environ. 31, 1317–1324 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    FAO. World Food Summit (FAO, Rome, 1996).

  • 31.

    Ayanlade, A. Seasonal rainfall variability in Guinea Savanna part of Nigeria: a GIS approach. Int. J. Clim. Change Strateg. Manag. 1, 282–296 (2009).

    Article 

    Google Scholar
     

  • 32.

    Ayanlade, A., Odekunle, T. & Orimoogunje, O. Impacts of climate variability on tuber crops in Guinea Savanna part of Nigeria: a GIS approach. J. Geogr. Geol. 2, 27 (2010).


    Google Scholar
     

  • 33.

    Ayanlade, A., Oluwatimilehin, I. A., Oladimeji, A. A., Atai, G. & Agbalajobi, D. T. African Handbook of Climate Change Adaptation (eds Leal Filho, W. et al.) 1–16 (Springer International Publishing, 2020).

  • 34.

    Sekyi-Annan, E., Acheampong, E. N. & Ozor, N. Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability 39–70 (Springer, 2017).

  • 35.

    Qian, B. et al. Climate change impacts on Canadian yields of spring wheat, canola and maize for global warming levels of 1.5 °C, 2.0 °C, 2.5 °C and 3.0 °C. Environ. Res. Lett. 14, 074005 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Gaupp, F., Hall, J., Mitchell, D. & Dadson, S. Increasing risks of multiple breadbasket failure under 1.5 and 2 C global warming. Agric. Syst. 175, 34–45 (2019).

    Article 

    Google Scholar
     

  • 37.

    Klutse, N. A. B., Owusu, K. & Boafo, Y. A. Projected temperature increases over northern Ghana. SN Appl. Sci. 2, 1–14 (2020).

    Article 

    Google Scholar
     

  • 38.

    Sultan, B., Defrance, D. & Iizumi, T. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Sci. Rep. 9, 1–15 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Sowunmi, F. & Akintola, J. Effect of climatic variability on maize production in Nigeria. Res. J. Environ. Earth Sci. 2, 19–30 (2010).


    Google Scholar
     

  • 40.

    Vinod, K. Climate and Soil Requirement of Paddy crop cultivation, http://agropedia.iitk.ac.in/content/climate-and-soil-requirement-paddy-crop-cultivation (2013).

  • 41.

    Adhikari, U., Nejadhashemi, A. P. & Woznicki, S. A. Climate change and eastern Africa: a review of impact on major crops. Food Energy Secur. 4, 110–132 (2015).

    Article 

    Google Scholar
     

  • 42.

    Ayanlade, A., Radeny, M., Morton, J. F. & Muchaba, T. Rainfall variability and drought characteristics in two agro-climatic zones: An assessment of climate change challenges in Africa. Sci. Total Environ. 630, 728–737 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Boansi, D., Tambo, J. A. & Müller, M. Intra-seasonal risk of agriculturally-relevant weather extremes in West African Sudan Savanna. Theor. Appl. Climatol. 135, 355–373 (2019).

    Article 

    Google Scholar
     

  • 44.

    Msowoya, K., Madani, K., Davtalab, R., Mirchi, A. & Lund, J. R. Climate change impacts on maize production in the warm heart of Africa. Water Resour. Manag. 30, 5299–5312 (2016).

    Article 

    Google Scholar
     

  • 45.

    Falconnier, G. et al. Modelling climate change impacts on maize yields under low nitrogen input conditions in sub‐Saharan Africa. Glob. Change Biol. 26, (2020).

  • 46.

    Ojo, T. & Baiyegunhi, L. Determinants of climate change adaptation strategies and its impact on the net farm income of rice farmers in south-west Nigeria. Land Use Policy 95, 103946 (2020).

    Article 

    Google Scholar
     

  • 47.

    Meynard, C. N., Lecoq, M., Chapuis, M. P. & Piou, C. On the relative role of climate change and management in the current desert locust outbreak in East Africa. Glob. Change Biol. 26, 3753–3755 (2020).

    Article 

    Google Scholar
     

  • 48.

    Salih, A. A., Baraibar, M., Mwangi, K. K. & Artan, G Climate change and locust outbreak in East Africa. Nat. Clim. Change 10, 584–585 (2020).

  • 49.

    Lone, S. A. & Aijaz, A. “COVID-19 pandemic–An African perspective”. Emergi. Microbes & Infect. 9, 11–28 (2020).

  • 50.

    Calderon, C. et al. Africa’s Pulse, No. 21, Spring 2020, The World Bank (2020).

  • 51.

    Amewu, S., Asante, S., Pauw, K. & Thurlow, J. The Economic Costs of COVID-19 in Sub-Saharan Africa: Insights from a Simulation Exercise for Ghana. Vol. 52 (Intl Food Policy Res Inst, 2020).

  • 52.

    Bargain, O. & Ulugbek, A. Poverty and Covid-19 in Developing Countries (Groupe de Recherche en Economie Théorique et Appliquée (GREThA), 2020).

  • 53.

    Arouna, A., Soullier, G., Del Villar, P. M. & Demont, M. Policy options for mitigating impacts of COVID-19 on domestic rice value chains and food security in West Africa. Global Food Security, 26, 100405 (2020).

  • 54.

    Devereux, S., Béné, C. & Hoddinott, J. Conceptualising COVID-19’s impacts on household food security. Food Security 14, 1–4 (2020).


    Google Scholar
     

  • 55.

    Medinilla, A., Bruce, B., & Philomena, A. “African regional responses to COVID-19.” (2020). https://ecdpm.org/wpcontent/uploads/African-regional-responses-COVID-19-discussion-paper-272-ECDPM.pdf.

  • 56.

    Martinez-Alvarez, M. et al. COVID-19 pandemic in west Africa. Lancet Glob. Health 8, e631–e632 (2020).

    Article 

    Google Scholar
     

  • 57.

    Ataguba, J. E. COVID-19 pandemic, a war to be won: understanding its economic implications for Africa (Springer, 2020).

  • 58.

    Omran, E.-S. E. in Climate Change Impacts on Agriculture and Food Security in Egypt, 249–271 (Springer, 2020).

  • 59.

    Jung, T. et al. Advancing polar prediction capabilities on daily to seasonal time scales. Bull. Am. Meteorol. Soc. 97, 1631–1647 (2016).

    Article 

    Google Scholar
     

  • 60.

    Klemm, T. & McPherson, R. A. The development of seasonal climate forecasting for agricultural producers. Agric. For. Meteorol. 232, 384–399 (2017).

    Article 

    Google Scholar
     

  • 61.

    Yang, Y. et al. Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts. Agric. Water Manag. 211, 70–80 (2019).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *