Deep learning-based diatom taxonomy on virtual slides


  • 1.

    Round, F. E., Crawford, R. M. & Mann, D. G. Diatoms: Biology and Morphology of the Genera (Cambridge University Press, Cambridge, 1990).


    Google Scholar
     

  • 2.

    Seckbach, J. & Kociolek, P. The Diatom World, Vol. 19 (Springer, Berlin, 2011).


    Google Scholar
     

  • 3.

    Necchi, J. R. O. River Algae 279 (Springer, Berlin, 2016).


    Google Scholar
     

  • 4.

    Esper, O. & Gersonde, R. Quaternary surface water temperature estimations: New diatom transfer functions for the Southern Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 1–19. https://doi.org/10.1016/j.palaeo.2014.08.008 (2014).

    Article 

    Google Scholar
     

  • 5.

    Hasle, G. R. & Fryxell, G. A. Diatoms: Cleaning and mounting for light and electron microscopy. Trans. Am. Microsc. Soc. 20, 469–474 (1970).

    Article 

    Google Scholar
     

  • 6.

    Kelly, M. et al. Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J. Appl. Phycol. 10, 215 (1998).

    Article 

    Google Scholar
     

  • 7.

    Cairns, J. Jr. et al. Determining the accuracy of coherent optical identification of diatoms. J. Am. Water Resour. Assoc. 15, 1770–1775 (1979).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    du Buf, H. & Bayer, M. M. Automatic Diatom Identification (World Scientific, Singapore, 2002).


    Google Scholar
     

  • 9.

    Kloster, M., Kauer, G. & Beszteri, B. SHERPA: An image segmentation and outline feature extraction tool for diatoms and other objects. BMC Bioinform. 15, 218. https://doi.org/10.1186/1471-2105-15-218 (2014).

    Article 

    Google Scholar
     

  • 10.

    Kloster, M., Esper, O., Kauer, G. & Beszteri, B. Large-scale permanent slide imaging and image analysis for diatom morphometrics. Appl. Sci. 7, 330. https://doi.org/10.3390/app7040330 (2017).

    Article 

    Google Scholar
     

  • 11.

    Beszteri, B. et al. Quantitative comparison of taxa and taxon concepts in the diatom genus Fragilariopsis: A case study on using slide scanning, multi-expert image annotation and image analysis in taxonomy. J. Phycol. https://doi.org/10.1111/jpy.12767 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Kloster, M., Kauer, G., Esper, O., Fuchs, N. & Beszteri, B. Morphometry of the diatom Fragilariopsis kerguelensis from Southern Ocean sediment: High-throughput measurements show second morphotype occurring during glacials. Mar. Micropaleontol. 143, 70–79 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Glemser, B. et al. Biogeographic differentiation between two morphotypes of the Southern Ocean diatom Fragilariopsis kerguelensis. Polar Biol. 42, 1369–1376. https://doi.org/10.1007/s00300-019-02525-0 (2019).

    Article 

    Google Scholar
     

  • 14.

    Kloster, M. et al. Temporal changes in size distributions of the Southern Ocean diatom Fragilariopsis kerguelensis through high-throughput microscopy of sediment trap samples. Diatom. Res. 34, 133–147. https://doi.org/10.1080/0269249X.2019.1626770 (2019).

    Article 

    Google Scholar
     

  • 15.

    Olson, R. J. & Sosik, H. M. A submersible imaging-in-flow instrument to analyze nano-and microplankton: Imaging FlowCytobot. Limnol. Oceanogr. Methods 5, 195–203. https://doi.org/10.4319/lom.2007.5.195 (2007).

    Article 

    Google Scholar
     

  • 16.

    Poulton, N. J. FlowCam: Quantification and classification of phytoplankton by imaging flow cytometry. In Imaging Flow Cytometry: Methods and Protocols (eds Barteneva, N. S. & Vorobjev, I. A.) 237–247 (Springer, New York, 2016).


    Google Scholar
     

  • 17.

    Schulz, J. et al. Imaging of plankton specimens with the lightframe on-sight keyspecies investigation (LOKI) system. J. Eur. Opt. Soc. Rapid Publ. 5, 20 (2010).

    Article 

    Google Scholar
     

  • 18.

    Cowen, R. K. & Guigand, C. M. In situ ichthyoplankton imaging system (ISIIS): System design and preliminary results. Limnol. Oceanogr. Methods 6, 126–132. https://doi.org/10.4319/lom.2008.6.126 (2008).

    Article 

    Google Scholar
     

  • 19.

    Orenstein, E. C., Beijbom, O., Peacock, E. E. & Sosik, H. M. Whoi-plankton-a large scale fine grained visual recognition benchmark dataset for plankton classification. https://arxiv.org/abs/1510.00745(arXiv preprint) (2015).

  • 20.

    Cheng, K., Cheng, X., Wang, Y., Bi, H. & Benfield, M. C. Enhanced convolutional neural network for plankton identification and enumeration. PLoS One 14, e0219570 (2019).

    Article 
    CAS 

    Google Scholar
     

  • 21.

    Dunker, S., Boho, D., Wäldchen, J. & Mäder, P. Combining high-throughput imaging flow cytometry and deep learning for efficient species and life-cycle stage identification of phytoplankton. BMC Ecol. 18, 51 (2018).

    Article 

    Google Scholar
     

  • 22.

    Lumini, A. & Nanni, L. Deep learning and transfer learning features for plankton classification. Ecol. Inform. 51, 33–43 (2019).

    Article 

    Google Scholar
     

  • 23.

    Luo, J. Y. et al. Automated plankton image analysis using convolutional neural networks. Limnol. Oceanogr. Methods 16, 814–827 (2018).

    Article 

    Google Scholar
     

  • 24.

    Mitra, R. et al. Automated species-level identification of planktic foraminifera using convolutional neural networks, with comparison to human performance. Mar. Micropaleontol. 147, 16–24 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Keçeli, A. S., Kaya, A. & Keçeli, S. U. Classification of radiolarian images with hand-crafted and deep features. Comput. Geosci. 109, 67–74 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Pedraza, A. et al. Automated diatom classification (Part B): A deep learning approach. Appl. Sci. 7, 460 (2017).

    Article 

    Google Scholar
     

  • 27.

    Zhou, Y. et al. Digital whole-slide image analysis for automated diatom test in forensic cases of drowning using a convolutional neural network algorithm. Forensic Sci. Int. 302, 109922 (2019).

    Article 

    Google Scholar
     

  • 28.

    Abadi, M. et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), 265–283 (2016).

  • 29.

    Chen, T. et al. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. https://arxiv.org/abs/1512.01274(arXiv preprint) (2015).

  • 30.

    Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).

    MathSciNet 
    Article 

    Google Scholar
     

  • 31.

    Pech-Pacheco, J. L. & Cristóbal, G. Automatic slide scanning. In Automatic Diatom Identification 259–288 (World Scientific, Singapore, 2002).

  • 32.

    Fischer, S., Shahabzkia, H. R. & Bunke, H. Contour extraction. In Automatic Diatom Identification 93–107 (World Scientific, Singapore, 2002).

  • 33.

    Rojas Camacho, O., Forero, M. & Menéndez, J. A tuning method for diatom segmentation techniques. Appl. Sci. 7, 762 (2017).

    Article 

    Google Scholar
     

  • 34.

    Bueno, G. et al. Automated diatom classification (Part A): Handcrafted feature approaches. Appl. Sci. 7, 753 (2017).

    Article 

    Google Scholar
     

  • 35.

    Sánchez, C., Vállez, N., Bueno, G. & Cristóbal, G.  Diatom classification including morphological adaptations using CNNs. In Iberian Conference on Pattern Recognition and Image Analysis 317–328 (Springer, Berlin, 2019).

  • 36.

    Crosta, X. Holocene size variations in two diatom species off East Antarctica: Productivity vs environmental conditions. Deep Sea Res. Part I 56, 1983–1993. https://doi.org/10.1016/j.dsr.2009.06.009 (2009).

    Article 
    CAS 

    Google Scholar
     

  • 37.

    Smetacek, V. et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 38.

    Mock, T. et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541, 536–540. https://doi.org/10.1038/nature20803 (2017).

    ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 39.

    Assmy, P. et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc. Natl. Acad. Sci. USA 110, 20633–20638. https://doi.org/10.1073/pnas.1309345110 (2013).

    ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • 40.

    Cárdenas, P. et al. Biogeochemical proxies and diatoms in surface sediments across the Drake Passage reflect oceanic domains and frontal systems in the region. Prog. Oceanogr. 174, 72–88. https://doi.org/10.1016/j.pocean.2018.10.004 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Simonsen, R. The Diatom Plankton of the Indian Ocean expedition of RV “Meteor” 1964–1965. Meteorology 66, 25 (1974).


    Google Scholar
     

  • 42.

    Chalfoun, J. et al. MIST: Accurate and scalable microscopy image stitching tool with stage modeling and error minimization. Sci. Rep. 7, 4988. https://doi.org/10.1038/s41598-017-04567-y (2017).

    ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • 43.

    Preibisch, S. Grid/Collection Stitching Plugin—ImageJ. https://imagej.net/Grid/Collection_Stitching_Plugin.

  • 44.

    Langenkämper, D., Zurowietz, M., Schoening, T. & Nattkemper, T. W. BIIGLE 2.0—browsing and annotating large marine image collections. Front. Mar. Sci. 4, 20. https://doi.org/10.3389/fmars.2017.00083 (2017).

    Article 

    Google Scholar
     

  • 45.

    Horton, T. et al. World Register of Marine Species (WoRMS). WoRMS Editorial Board (2020).

  • 46.

    Schoening, T., Osterloff, J. & Nattkemper, T. W. RecoMIA—recommendations for marine image annotation: Lessons learned and future directions. Front. Mar. Sci. 3, 59 (2016).

    Article 

    Google Scholar
     

  • 47.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (2015).

  • 48.

    Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. https://arxiv.org/abs/1409.1556(arXiv preprint) (2014).

  • 49.

    Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. Inception-v4, Inception-ResNet and the impact of residual connections on learning. In Thirty-First AAAI Conference on Artificial Intelligence (2017).

  • 50.

    Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, 1251–1258 (2017).

  • 51.

    Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700–4708 (2017).

  • 52.

    Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520 (2018).

  • 53.

    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2818–2826 (2016).

  • 54.

    Chollet, F. et al. Keras. https://keras.io (2015).

  • 55.

    Deng, J. et al. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (2009).

  • 56.

    Kingma, D. & Adam, B. J. A method for stochastic optimization. https://arxiv.org/abs/1412.6980(arXiv preprint) (2014).

  • 57.

    Chollet, F., & Allaire, J. J., et al. R interface to Keras. https://github.com/rstudio/keras (2017).

  • 58.

    He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask R-CNN. In 2017 IEEE International Conference on Computer Vision (ICCV), 2980–2988 (2017).

  • 59.

    Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (eds Navab N. et al.) 234–241 (Springer International Publishing, Cham, 2015).

  • 60.

    Cheng, B. et al. Panoptic-DeepLab: A simple, strong, and fast baseline for bottom-up panoptic segmentation. https://arxiv.org/abs/1911.10194(arXiv preprint) (2019).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *