Defect structure evolution of polyacrylonitrile and single wall carbon nanotube nanocomposites: a molecular dynamics simulation approach


  • 1.

    Mo, J. H., Kim, K. C. & Jang, K. S. Well-dispersed carbon nanotube/polymer composite films and application to electromagnetic interference shielding. J. Ind. Eng. Chem. 80, 190–196. https://doi.org/10.1016/j.jiec.2019.07.048 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Bhattacharyya, A. R., Potschke, P., Abdel-Goad, M. & Fischer, D. Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites. Chem. Phys. Lett. 392, 28–33. https://doi.org/10.1016/j.cplett.2004.05.045 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Li, X. et al. Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning. Phys. Chem. Chem. Phys. 17, 21856–21865. https://doi.org/10.1039/c5cp02498f (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Chae, H. G., Choi, Y. H., Minus, M. L. & Kumar, S. Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Compos. Sci. Technol. 69, 406–413. https://doi.org/10.1016/j.compscitech.2008.11.008 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Chae, H. G., Minus, M. L., Rasheed, A. & Kumar, S. Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers. Polymer 48, 3781–3789. https://doi.org/10.1016/j.polymer.2007.04.072 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Chae, H. G., Minus, M. L. & Kumar, S. Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile. Polymer 47, 3494–3504. https://doi.org/10.1016/j.polymer.2006.03.050 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Wang, W. J., Murthy, N. S., Chae, H. G. & Kumar, S. Structural changes during deformation in carbon nanotube-reinforced polyacrylonitrile fibers. Polymer 49, 2133–2145. https://doi.org/10.1016/j.polymer.2008.02.035 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Nam, T. H. et al. Effects of CNT diameter on mechanical properties of aligned CNT sheets and composites. Compos. Part A Appl. Sci. Manuf. 76, 289–298. https://doi.org/10.1016/j.compositesa.2015.06.009 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Thostenson, E. T. & Chou, T. W. On the elastic properties of carbon nanotube-based composites: modelling and characterization. J. Phys. D Appl. Phys. 36, 573–582. https://doi.org/10.1088/0022-3727/36/5/323 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Frank, E., Hermanutz, F. & Buchmeiser, M. R. Carbon fibers: precursors, manufacturing, and properties. Macromol. Mater. Eng. 297, 493–501. https://doi.org/10.1002/mame.201100406 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Gill, A. S., Visotsky, D., Mears, L. & Summers, J. D. Cost estimation model for polyacrylonitrile-based carbon fiber manufacturing process. J. Manuf. Sci. Eng. Trans. ASME 139, 041011. https://doi.org/10.1115/1.4034713 (2017).

    Article 

    Google Scholar
     

  • 12.

    Naito, K., Yang, J. M., Tanaka, Y. & Kagawa, Y. The effect of gauge length on tensile strength and Weibull modulus of polyacrylonitrile (PAN)- and pitch-based carbon fibers. J. Mater. Sci. 47, 632–642. https://doi.org/10.1007/s10853-011-5832-x (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Meng, J. S., Zhang, Y. Y., Cranford, S. W. & Minus, M. L. Nanotube dispersion and polymer conformational confinement in a nanocomposite fiber: a joint computational experimental study. J. Phys. Chem. B 118, 9476–9485. https://doi.org/10.1021/jp504726w (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Gissinger, J. R., Pramanik, C., Newcomb, B., Kumar, S. & Heinz, H. Nanoscale structure-property relationships of polyacrylonitrile/CNT composites as a function of polymer crystallinity and CNT diameter. ACS Appl. Mater. Inter. 10, 1017–1027. https://doi.org/10.1021/acsami.7b09739 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792. https://doi.org/10.1126/science.1060928 (2002).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Wang, X. et al. Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Compos. Sci. Technol. 71, 1677–1683. https://doi.org/10.1016/j.compscitech.2011.07.023 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Saba, N. & Jawaid, M. A review on thermomechanical properties of polymers and fibers reinforced polymer composites. J. Ind. Eng. Chem. 67, 1–11. https://doi.org/10.1016/j.jiec.2018.06.018 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Jang, D., Lee, D. S., Lee, A., Joh, H. I. & Lee, S. Opto-thermal technique for measuring thermal conductivity of polyacrylonitrile based carbon fibers. J. Ind. Eng. Chem. 78, 137–142. https://doi.org/10.1016/j.jiec.2019.06.025 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Jain, R., Chae, H. G. & Kumar, S. Polyacrylonitrile/carbon nanofiber nanocomposite fibers. Compos. Sci. Technol. 88, 134–141. https://doi.org/10.1016/j.compscitech.2013.08.036 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Newcomb, B. A. et al. Processing, structure, and properties of gel spun PAN and PAN/CNT fibers and gel spun PAN based carbon fibers. Polym. Eng. Sci. 55, 2603–2614. https://doi.org/10.1002/pen.24153 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Chae, H. G. et al. High strength and high modulus carbon fibers. Carbon 93, 81–87. https://doi.org/10.1016/j.carbon.2015.05.016 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Mayo, S. L., Olafson, B. D. & Goddard, W. A. Dreiding: a generic force-field for molecular simulations. J. Phys. Chem. 94, 8897–8909. https://doi.org/10.1021/j100389a010 (1990).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Jeon, I.-Y. et al. Sponge behaviors of functionalized few-walled carbon nanotubes. J. Phys. Chem. C 114, 14868–14875 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Lee, S. G. et al. Deswelling mechanisms of surface-grafted Poly(NIPAAm) brush: molecular dynamics simulation approach. J. Phys. Chem. C 116, 15974–15985. https://doi.org/10.1021/jp301610b (2012).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Lee, J. et al. A nanophase-separated, quasi-solid-state polymeric single-ion conductor: polysulfide exclusion for lithium-sulfur batteries. ACS Energy Lett. 2, 1232–1239 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Doo, G. et al. Tuning the ionomer distribution in the fuel cell catalyst layer with scaling the ionomer aggregate size in dispersion. ACS Appl. Mater. Inter. 10, 17835–17841. https://doi.org/10.1021/acsami.8b01751 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Lee, J. H. et al. Dispersion-solvent control of ionomer aggregation in a polymer electrolyte membrane fuel cell. Sci. Rep. 8, 10739. https://doi.org/10.1038/s41598-018-28779-y (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Kwon, S. H., Lee, S. Y., Kim, H.-J., Kim, H.-T. & Lee, S. G. Effect of binder content on Pt/C catalyst coverage in a high temperature polymer electrolyte membrane fuel cell. ACS Appl. Nano Mater. 1, 3251–3258 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions: 1. J. Chem. Phys. 23, 1833–1840. https://doi.org/10.1063/1.1740588 (1955).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Perdew, J. P., Burke, K. & Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533–16539. https://doi.org/10.1103/PhysRevB.54.16533 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Swope, W. C., Andersen, H. C., Berens, P. H. & Wilson, K. R. A Computer-simulation method for the calculation of equilibrium-constants for the formation of physical clusters of molecules—application to small water clusters. J. Chem. Phys. 76, 637–649 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Materials Studio (Biovia, Dassault Systemes, San Diego, 2018).

  • 34.

    Lee, S. G., Brunello, G. F., Jang, S. S., Lee, J. H. & Bucknall, D. G. Effect of monomeric sequence on mechanical properties of P(VP-co-HEMA) hydrogels at low hydration. J. Phys. Chem. B 113, 6604–6612. https://doi.org/10.1021/jp8058867 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Lee, S. G., Brunello, G. F., Jang, S. S. & Bucknall, D. G. Molecular dynamics simulation study of P (VP-co-HEMA) hydrogels: effect of water content on equilibrium structures and mechanical properties. Biomaterials 30, 6130–6141. https://doi.org/10.1016/j.biomaterials.2009.07.035 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Hurley, R. B. & Tzentis, L. S. Density of polyacrylonitrile. J. Polym. Sci. Part B Polym. Phys. 1, 423–426. https://doi.org/10.1002/pol.1963.110010806 (1963).

    Article 

    Google Scholar
     

  • 37.

    Chiang, R. Crystallization and melting behavior of polyacrylonitrile. J. Polym. Sci. A 1, 2765–2775. https://doi.org/10.1002/pol.1963.100010902 (1963).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Shokrieh, M. M. & Rafiee, R. On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos. Struct. 92, 647–652. https://doi.org/10.1016/j.compstruct.2009.09.033 (2010).

    Article 

    Google Scholar
     

  • 39.

    Yang, S., Yu, S., Kyoung, W., Han, D. S. & Cho, M. Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections. Polymer 53, 623–633. https://doi.org/10.1016/j.polymer.2011.11.052 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Chae, H. G., Sreekumar, T. V., Uchida, T. & Kumar, S. A comparison of reinforcement efficiency of various types of carbon nanotubes in poly acrylonitrile fiber. Polymer 46, 10925–10935. https://doi.org/10.1016/j.polymer.2005.08.092 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Niyogi, S. et al. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105–1113. https://doi.org/10.1021/ar010155r (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Natsuki, T., Tantrakarn, K. & Endo, M. Effects of carbon nanotube structures on mechanical properties. Appl. Phys. A 79, 117–124. https://doi.org/10.1007/s00339-003-2492-y (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 43.

    Mori, H., Hirai, Y., Ogata, S., Akita, S. & Nakayama, Y. Chirality dependence of mechanical properties of single-walled carbon nanotubes under axial tensile strain. Jpn. J. Appl. Phys. 2(44), L1307–L1309. https://doi.org/10.1143/Jjap.44.L1307 (2005).

    Article 

    Google Scholar
     

  • 44.

    Thompson, A. P., Plimpton, S. J. & Mattson, W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 131, 154107. https://doi.org/10.1063/1.3245303 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Connolly, M. L. Analytical molecular-surface calculation. J. Appl. Crystallogr. 16, 548–558. https://doi.org/10.1107/S0021889883010985 (1983).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Theodorou, D. N. & Suter, U. W. Atomistic modeling of mechanical-properties of polymeric glasses. Macromolecules 19, 139–154. https://doi.org/10.1021/ma00155a022 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 47.

    Cornwell, C. F. & Wille, L. T. Elastic properties of single-walled carbon nanotubes in compression. Solid State Commun. 101, 555–558. https://doi.org/10.1016/S0038-1098(96)00742-9 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 48.

    Coleman, J. N., Khan, U. & Gun’ko, Y. K. Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 689–706. https://doi.org/10.1002/adma.200501851 (2006).

    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *