Deforestation and reforestation impacts on soils in the tropics


  • 1.

    Koch, A. et al. Soil security: solving the global soil crisis. Glob. Policy 4, 434–441 (2013).


    Google Scholar
     

  • 2.

    Vogel, H.-J. et al. A systemic approach for modeling soil functions. SOIL 4, 83–92 (2018).


    Google Scholar
     

  • 3.

    Corre, M. D., Veldkamp, E., Arnold, J. & Wright, S. J. Impact of elevated N input on soil N cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91, 1715–1729 (2010).


    Google Scholar
     

  • 4.

    Cusack, D. F., Markesteijn, L., Condit, R., Lewis, O. T. & Turner, B. L. Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots. Biogeochemistry 137, 253–266 (2018).


    Google Scholar
     

  • 5.

    Vitousek, P. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).


    Google Scholar
     

  • 6.

    Powers, J. S., Corre, M. D., Twine, T. E. & Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl Acad. Sci. USA 108, 6318–6322 (2011).


    Google Scholar
     

  • 7.

    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob. Change Biol. 17, 1658–1670 (2011).


    Google Scholar
     

  • 8.

    Chaves, J. et al. Land management impacts on runoff sources in small Amazon watersheds. Hydrol. Process. 22, 1766–1775 (2008).


    Google Scholar
     

  • 9.

    Nepstad, D. C. et al. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372, 666–669 (1994).


    Google Scholar
     

  • 10.

    Elsenbeer, H. Hydrologic flowpaths in tropical rainforest soilscapes-a review. Hydrol. Process. 15, 1751–1759 (2001).


    Google Scholar
     

  • 11.

    Markewitz, D., Davidson, E., Moutinho, P. & Nepstad, D. Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol. Appl. 14, 177–199 (2004).


    Google Scholar
     

  • 12.

    Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).


    Google Scholar
     

  • 13.

    Clark, D. B., Palmer, M. W. & Clark, D. A. Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80, 2662–2675 (1999).


    Google Scholar
     

  • 14.

    Jones, M. M. et al. Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia 155, 593–604 (2008).


    Google Scholar
     

  • 15.

    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).


    Google Scholar
     

  • 16.

    Barnes, A. D. et al. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. 5, 5351 (2014).


    Google Scholar
     

  • 17.

    Grass, I. et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).


    Google Scholar
     

  • 18.

    Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007).


    Google Scholar
     

  • 19.

    Jobbágy, E. G. & Jackson, R. B. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53, 51–77 (2001).


    Google Scholar
     

  • 20.

    Clough, Y. et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7, 13137 (2016).


    Google Scholar
     

  • 21.

    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).


    Google Scholar
     

  • 22.

    Roberts, P., Hunt, C., Arroyo-Kalin, M., Evans, D. & Boivin, N. The deep human prehistory of global tropical forests and its relevance for modern conservation. Nat. Plants 3, 17093 (2017).


    Google Scholar
     

  • 23.

    Ribeiro Filho, A. A., Adams, C., Manfredini, S., Aguilar, R. & Neves, W. A. Dynamics of soil chemical properties in shifting cultivation systems in the tropics: a meta-analysis. Soil Use Manag. 31, 474–482 (2015).


    Google Scholar
     

  • 24.

    Jarosz, L. Defining and explaining tropical deforestation: shifting cultivation and population growth in colonial Madagascar (1896–1940). Econ. Geogr. 69, 366–379 (1993).


    Google Scholar
     

  • 25.

    Lambin, E. F. et al. The causes of land-use and land-cover change: moving beyond the myths. Glob. Environ. Change 11, 261–269 (2001).


    Google Scholar
     

  • 26.

    Rudel, T. K., Defries, R., Asner, G. P. & Laurance, W. F. Changing drivers of deforestation and new opportunities for conservation. Conserv. Biol. 23, 1396–1405 (2009).


    Google Scholar
     

  • 27.

    Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 9–20 (2015).


    Google Scholar
     

  • 28.

    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).


    Google Scholar
     

  • 29.

    Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 68–77 (2015).


    Google Scholar
     

  • 30.

    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).


    Google Scholar
     

  • 31.

    Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. & Veldkamp, E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience 50, 667–680 (2000).


    Google Scholar
     

  • 32.

    Kurniawan, S. et al. Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils. Biogeosciences 15, 5131–5154 (2018).


    Google Scholar
     

  • 33.

    Detwiler, R. P. Land use change and the global carbon cycle: the role of tropical soils. Biogeochemistry 2, 67–93 (1986).


    Google Scholar
     

  • 34.

    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002).


    Google Scholar
     

  • 35.

    Davidson, E. A. & Ackerman, I. L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20, 161–193 (1993).


    Google Scholar
     

  • 36.

    Veldkamp, E. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Sci. Soc. Am. J. 58, 175–180 (1994).


    Google Scholar
     

  • 37.

    Nye, P. H. & Greenland, D. J. Changes in the soil after clearing tropical forest. Plant Soil 21, 101–112 (1964).


    Google Scholar
     

  • 38.

    van Straaten, O. et al. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. Proc. Natl Acad. Sci. USA 112, 9956–9960 (2015).


    Google Scholar
     

  • 39.

    Tugel, A. J. et al. Soil change, soil survey, and natural resources decision making. Soil Sci. Soc. Am. J. 69, 738–747 (2005).


    Google Scholar
     

  • 40.

    Sanchez, P. A. Properties and Management of Soils in the Tropics 2nd edn (Cambridge Univ. Press, 2019).

  • 41.

    van Breemen, N., Mulder, J. & Driscoll, C. T. Acidification and alkalinization of soils. Plant Soil 75, 283–308 (1983).


    Google Scholar
     

  • 42.

    Andriesse, J. P. & Schelhaas, R. M. A monitoring study on nutrient cycles in soils used for shifting cultivation under various climatic conditions in tropical Asia. III. The effects of land clearing through burning on fertility level. Agric. Ecosyst. Environ. 19, 311–332 (1987).


    Google Scholar
     

  • 43.

    Dechert, G., Veldkamp, E. & Brumme, R. Are partial nutrient balances suitable to evaluate nutrient sustainability of land use systems? Results from a case study in Central Sulawesi, Indonesia. Nutr. Cycling Agroecosyst. 72, 201–212 (2005).


    Google Scholar
     

  • 44.

    Neill, C. et al. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecol. Appl. 7, 1216–1225 (1997).


    Google Scholar
     

  • 45.

    Allen, K., Corre, M. D., Kurniawan, S., Utami, S. R. & Veldkamp, E. Spatial variability surpasses land-use change effects on soil biochemical properties of converted lowland landscapes in Sumatra, Indonesia. Geoderma 284, 42–50 (2016).


    Google Scholar
     

  • 46.

    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).


    Google Scholar
     

  • 47.

    Sanchez P. A. & Logan T. J. Myths and Science About the Chemistry and Fertility of Soils in the Tropics (Soil Science Society of America and American Society of Agronomy, 1992).

  • 48.

    Stahl, C. et al. Continuous soil carbon storage of old permanent pastures in Amazonia. Glob. Change Biol. 23, 3382–3392 (2017).


    Google Scholar
     

  • 49.

    Bautista-Cruz, A. & del Castillo, R. F. Soil changes during secondary succession in a tropical montane cloud forest area. Soil Sci. Soc. Am. J. 69, 906–914 (2005).


    Google Scholar
     

  • 50.

    Marin-Spiotta, E., Silver, W. L., Swanston, C. W. & Ostertag, R. Soil organic matter dynamics during 80 years of reforestation of tropical pastures. Glob. Change Biol. 15, 1584–1597 (2009).


    Google Scholar
     

  • 51.

    Silver, W. L. et al. Effects of soil texture on belowground carbon and nutrient storage in a lowland Amazonian forest ecosystem. Ecosystems 3, 193–209 (2000).


    Google Scholar
     

  • 52.

    Oades, J. & Waters, A. Aggregate hierarchy in soils. Soil Res. 29, 815–828 (1991).


    Google Scholar
     

  • 53.

    Chauvel, A., Grimaldi, M. & Tessier, D. Changes in soil pore-space distribution following deforestation and revegetation: an example from the Central Amazon Basin, Brazil. For. Ecol. Manag. 38, 259–271 (1991).


    Google Scholar
     

  • 54.

    Kayombo, B. & Lal, R. Effects of soil compaction by rolling on soil structure and development of maize in no-till and disc ploughing systems on a tropical alfisol. Soil. Tillage Res. 7, 117–134 (1986).


    Google Scholar
     

  • 55.

    Lal, R. Effects of macrofauna on soil properties in tropical ecosystems. Agric. Ecosyst. Environ. 24, 101–116 (1988).


    Google Scholar
     

  • 56.

    Ghuman, B. S., Lal, R. & Shearer, W. Land clearing and use in the humid Nigerian tropics: I. Soil physical properties. Soil Sci. Soc. Am. J. 55, 178–183 (1991).


    Google Scholar
     

  • 57.

    Minasny, B. & Hartemink, A. E. Predicting soil properties in the tropics. Earth Sci. Rev. 106, 52–62 (2011).


    Google Scholar
     

  • 58.

    Hombegowda, H. C., van Straaten, O., Köhler, M. & Hölscher, D. On the rebound: soil organic carbon stocks can bounce back to near forest levels when agroforests replace agriculture in southern India. SOIL 2, 13–23 (2016).


    Google Scholar
     

  • 59.

    Parton, W. J., Stewart, J. W. B. & Cole, C. V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5, 109–131 (1988).


    Google Scholar
     

  • 60.

    López-Ulloa, M., Veldkamp, E. & de Koning, G. H. J. Soil carbon stabilization in converted tropical pastures and forests depends on soil type. Soil Sci. Soc. Am. J. 69, 1110–1117 (2005).


    Google Scholar
     

  • 61.

    Paul, S., Flessa, H., Veldkamp, E. & López-Ulloa, M. Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses. Biogeochemistry 87, 247–263 (2008).


    Google Scholar
     

  • 62.

    Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci. 29, 535–562 (2001).


    Google Scholar
     

  • 63.

    Douglas, P. M. J. et al. A long-term decrease in the persistence of soil carbon caused by ancient Maya land use. Nat. Geosci. 11, 645–649 (2018).


    Google Scholar
     

  • 64.

    Marín-Spiotta, E. & Sharma, S. Carbon storage in successional and plantation forest soils: a tropical analysis. Glob. Ecol. Biogeogr. 22, 105–117 (2013).


    Google Scholar
     

  • 65.

    Trumbore, S. E., Davidson, E. A., Barbosa de Camargo, P., Nepstad, D. C. & Martinelli, L. A. Belowground cycling of carbon in forests and pastures of eastern Amazonia. Glob. Biogeochem. Cycles 9, 515–528 (1995).


    Google Scholar
     

  • 66.

    Veldkamp, E., Becker, A., Schwendenmann, L., Clark, D. A. & Schulte-Bisping, H. Substantial labile carbon stocks and microbial activity in deeply weathered soils below a tropical wet forest. Glob. Change Biol. 9, 1171–1184 (2003).


    Google Scholar
     

  • 67.

    Intergovernmental Panel on Climate Change (IPCC) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019).

  • 68.

    Reiners, W. A., Bouwman, A. F., Parsons, W. F. J. & Keller, M. Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecol. Appl. 4, 363–377 (1994).


    Google Scholar
     

  • 69.

    Hamer, U., Potthast, K., Burneo, J. I. & Makeschin, F. Nutrient stocks and phosphorus fractions in mountain soils of Southern Ecuador after conversion of forest to pasture. Biogeochemistry 112, 495–510 (2013).


    Google Scholar
     

  • 70.

    Veldkamp, E., Davidson, E., Erickson, H., Keller, M. & Weitz, A. Soil nitrogen cycling and nitrogen oxide emissions along a pasture chronosequence in the humid tropics of Costa Rica. Soil Biol. Biochem. 31, 387–394 (1999).


    Google Scholar
     

  • 71.

    Wick, B., Veldkamp, E., de Mello, W. Z., Keller, M. & Crill, P. Nitrous oxide fluxes and nitrogen cycling along a pasture chronosequence in Central Amazonia, Brazil. Biogeosciences 2, 175–187 (2005).


    Google Scholar
     

  • 72.

    van Dam, D., van Breemen, N. & Veldkamp, E. Soil organic carbon dynamics: variability with depth in forested and deforested soils under pasture in Costa Rica. Biogeochemistry 39, 343–375 (1997).


    Google Scholar
     

  • 73.

    Fisher, M. J. et al. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371, 236–238 (1994).


    Google Scholar
     

  • 74.

    Navarrete, D., Sitch, S., Aragão, L. E. O. C. & Pedroni, L. Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices. Glob. Change Biol. 22, 3503–3517 (2016).


    Google Scholar
     

  • 75.

    Chiti, T., Grieco, E., Perugini, L., Rey, A. & Valentini, R. Effect of the replacement of tropical forests with tree plantations on soil organic carbon levels in the Jomoro district, Ghana. Plant Soil 375, 47–59 (2014).


    Google Scholar
     

  • 76.

    Kirsten, M., Kimaro, D. N., Feger, K.-H. & Kalbitz, K. Impact of land use on soil organic carbon stocks in the humid tropics of NE Tanzania. J. Plant. Nutr. Soil Sci. 182, 625–636 (2019).


    Google Scholar
     

  • 77.

    Kassa, H., Dondeyne, S., Poesen, J., Frankl, A. & Nyssen, J. Impact of deforestation on soil fertility, soil carbon and nitrogen stocks: the case of the Gacheb catchment in the White Nile Basin, Ethiopia. Agric. Ecosyst. Environ. 247, 273–282 (2017).


    Google Scholar
     

  • 78.

    Dechert, G., Veldkamp, E. & Anas, I. Is soil degradation unrelated to deforestation? Examining soil parameters of land use systems in upland Central Sulawesi, Indonesia. Plant Soil 265, 197–209 (2004).


    Google Scholar
     

  • 79.

    Hiremath, A. J. & Ewel, J. J. Ecosystem nutrient use efficiency, productivity, and nutrient accrual in model tropical communities. Ecosystems 4, 669–682 (2001).


    Google Scholar
     

  • 80.

    Pineiro, G., Oesterheld, M., Batista, W. B. & Paruelo, J. M. Opposite changes of whole-soil vs. pools C:N ratios: a case of Simpson’s paradox with implications on nitrogen cycling. Glob. Change Biol. 12, 804–809 (2006).


    Google Scholar
     

  • 81.

    de Koning, G. H. J., Veldkamp, E. & López-Ulloa, M. Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Glob. Biogeochem. Cycles 17, 1098 (2003).


    Google Scholar
     

  • 82.

    Silver, W. L., Ostertag, R. & Lugo, A. E. The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor. Ecol. 8, 394–407 (2000).


    Google Scholar
     

  • 83.

    Krashevska, V. et al. Micro-decomposer communities and decomposition processes in tropical lowlands as affected by land use and litter type. Oecologia 187, 255–266 (2018).


    Google Scholar
     

  • 84.

    Allen, K., Corre, M. D., Tjoa, A. & Veldkamp, E. Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS ONE 10, e0133325 (2015).


    Google Scholar
     

  • 85.

    Brinkmann, N. et al. Intensive tropical land use massively shifts soil fungal communities. Sci. Rep. 9, 3403 (2019).


    Google Scholar
     

  • 86.

    Berkelmann, D. et al. How rainforest conversion to agricultural systems in Sumatra (Indonesia) affects active soil bacterial communities. Front. Microbiol. 9, 2381 (2018).


    Google Scholar
     

  • 87.

    Schneider, D. et al. Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia). Front. Microbiol. 6, 1339 (2015).


    Google Scholar
     

  • 88.

    Janos, D. P. Mycorrhizae influence tropical succession. Biotropica 12, 56–64 (1980).


    Google Scholar
     

  • 89.

    Bachelot, B. et al. Associations among arbuscular mycorrhizal fungi and seedlings are predicted to change with tree successional status. Ecology 99, 607–620 (2018).


    Google Scholar
     

  • 90.

    Gei, M. et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).


    Google Scholar
     

  • 91.

    Ostertag, R., Marín-Spiotta, E., Silver, W. L. & Schulten, J. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 11, 701–714 (2008).


    Google Scholar
     

  • 92.

    Cole, R. J., Selmants, P., Khan, S. & Chazdon, R. Litter dynamics recover faster than arthropod biodiversity during tropical forest succession. Biotropica 52, 22–33 (2020).


    Google Scholar
     

  • 93.

    Zou, X. & Gonzalez, G. Changes in earthworm density and community structure during secondary succession in abandoned tropical pastures. Soil Biol. Biochem. 29, 627–629 (1997).


    Google Scholar
     

  • 94.

    Stone, M. J., Shoo, L., Stork, N. E., Sheldon, F. & Catterall, C. P. Recovery of decomposition rates and decomposer invertebrates during rain forest restoration on disused pasture. Biotropica 52, 230–241 (2020).


    Google Scholar
     

  • 95.

    Meloni, F. & Varanda, E. M. Litter and soil arthropod colonization in reforested semi-deciduous seasonal Atlantic forests: Arthropod colonization in Atlantic forest soils. Restor. Ecol. 23, 690–697 (2015).


    Google Scholar
     

  • 96.

    Cleveland, C. C. et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis: Nutrients, climate and tropical NPP. Ecol. Lett. 14, 939–947 (2011).


    Google Scholar
     

  • 97.

    Matson, A. L., Corre, M. D., Burneo, J. I. & Veldkamp, E. Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry 122, 281–294 (2015).


    Google Scholar
     

  • 98.

    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).


    Google Scholar
     

  • 99.

    Cusack, D. F., Silver, W. & McDowell, W. H. Biological nitrogen fixation in two tropical forests: ecosystem-level patterns and effects of nitrogen fertilization. Ecosystems 12, 1299–1315 (2009).


    Google Scholar
     

  • 100.

    Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: Embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).


    Google Scholar
     

  • 101.

    Kennedy, M. J., Chadwick, O. A., Vitousek, P. M., Derry, L. A. & Hendricks, D. M. Changing sources of base cations during ecosystem development, Hawaiian Islands. Geology 26, 1015–1018 (1998).


    Google Scholar
     

  • 102.

    Bristow, C. S., Hudson-Edwards, K. A. & Chappell, A. Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37, L14807 (2010).


    Google Scholar
     

  • 103.

    Bortoluzzi, E. C., Pérez, C. A. S., Ardisson, J. D., Tiecher, T. & Caner, L. Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Appl. Clay Sci. 104, 196–204 (2015).


    Google Scholar
     

  • 104.

    Hedin, L. O., Vitousek, P. M. & Matson, P. A. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).


    Google Scholar
     

  • 105.

    Mackensen, J., Hölscher, D., Klinge, R. & Fölster, H. Nutrient transfer to the atmosphere by burning of debris in eastern Amazonia. For. Ecol. Manag. 86, 121–128 (1996).


    Google Scholar
     

  • 106.

    Klinge, R., Araujo Martins, A. R., Mackensen, J. & Fölster, H. Element loss on rain forest conversion in East Amazonia: comparison of balances of stores and fluxes. Biogeochemistry 69, 63–82 (2004).


    Google Scholar
     

  • 107.

    Weitz, A. M., Veldkamp, E., Keller, M., Neff, J. & Crill, P. M. Nitrous oxide, nitric oxide, and methane fluxes from soils following clearing and burning of tropical secondary forest. J. Geophys. Res. Atmos. 103, 28047–28058 (1998).


    Google Scholar
     

  • 108.

    Moebius-Clune, B. N. et al. Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agric. Ecosyst. Environ. 141, 86–99 (2011).


    Google Scholar
     

  • 109.

    Ngoze, S. et al. Nutrient constraints to tropical agroecosystem productivity in long-term degrading soils. Glob. Change Biol. 14, 2810–2822 (2008).


    Google Scholar
     

  • 110.

    Haileslassie, A., Priess, J. A., Veldkamp, E. & Lesschen, J. P. Nutrient flows and balances at the field and farm scale: Exploring effects of land-use strategies and access to resources. Agric. Syst. 94, 459–470 (2007).


    Google Scholar
     

  • 111.

    Kassa, H., Dondeyne, S., Poesen, J., Frankl, A. & Nyssen, J. Agro-ecological implications of forest and agroforestry systems conversion to cereal-based farming systems in the White Nile Basin, Ethiopia. Agroecol. Sustain. Food Syst. 42, 149–168 (2018).


    Google Scholar
     

  • 112.

    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).


    Google Scholar
     

  • 113.

    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).


    Google Scholar
     

  • 114.

    Drake, T. W. et al. Mobilization of aged and biolabile soil carbon by tropical deforestation. Nat. Geosci. 12, 541–546 (2019).


    Google Scholar
     

  • 115.

    Meijide, A. et al. Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel. Nat. Commun. 11, 1089 (2020).


    Google Scholar
     

  • 116.

    Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 96, 1–63 (2007).


    Google Scholar
     

  • 117.

    Dutaur, L. & Verchot, L. V. A global inventory of the soil CH4 sink. Glob. Biogeochem. Cycles 21, GB4013 (2007).


    Google Scholar
     

  • 118.

    Veldkamp, E., Koehler, B. & Corre, M. D. Indications of nitrogen-limited methane uptake in tropical forest soils. Biogeosciences 10, 5367–5379 (2013).


    Google Scholar
     

  • 119.

    Matson, A. L., Corre, M. D., Langs, K. & Veldkamp, E. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama. Biogeosciences 14, 3509–3524 (2017).


    Google Scholar
     

  • 120.

    Koehler, B. et al. An in-depth look into a tropical lowland forest soil: nitrogen-addition effects on the contents of N2O, CO2 and CH4 and N2O isotopic signatures down to 2-m depth. Biogeochemistry 111, 695–713 (2012).


    Google Scholar
     

  • 121.

    Hassler, E. et al. Soil fertility controls soil–atmosphere carbon dioxide and methane fluxes in a tropical landscape converted from lowland forest to rubber and oil palm plantations. Biogeosciences 12, 5831–5852 (2015).


    Google Scholar
     

  • 122.

    Keller, M. & Reiners, W. A. Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa Rica. Glob. Biogeochem. Cycles 8, 399–409 (1994).


    Google Scholar
     

  • 123.

    Veldkamp, E., Weitz, A. M. & Keller, M. Management effects on methane fluxes in humid tropical pasture soils. Soil Biol. Biochem. 33, 1493–1499 (2001).


    Google Scholar
     

  • 124.

    Tian, H. et al. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosyst. Health Sustain. 1, 1–20 (2015).


    Google Scholar
     

  • 125.

    Veldkamp, E., Purbopuspito, J., Corre, M. D., Brumme, R. & Murdiyarso, D. Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia. J. Geophys. Res. Biogeosci. 113, G02003 (2008).


    Google Scholar
     

  • 126.

    Weitz, A. M., Linder, E., Frolking, S., Crill, P. M. & Keller, M. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability. Soil. Biol. Biochem. 33, 1077–1093 (2001).


    Google Scholar
     

  • 127.

    Keesstra, S. et al. Soil as a filter for groundwater quality. Curr. Opin. Environ. Sustain. 4, 507–516 (2012).


    Google Scholar
     

  • 128.

    Schwendenmann, L. & Veldkamp, E. The role of dissolved organic carbon, dissolved organic nitrogen, and dissolved inorganic nitrogen in a tropical wet forest ecosystem. Ecosystems 8, 339–351 (2005).


    Google Scholar
     

  • 129.

    Lehmann, J. et al. Subsoil retention of organic and inorganic nitrogen in a Brazilian savanna Oxisol. Soil Use Manag. 20, 163–172 (2004).


    Google Scholar
     

  • 130.

    Neill, C. et al. Watershed responses to Amazon soya bean cropland expansion and intensification. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120425 (2013).


    Google Scholar
     

  • 131.

    Rasiah, V. & Armour, J. D. Nitrate accumulation under cropping in the Ferrosols of Far North Queensland wet tropics. Aust. J. Soil Res. 39, 329–341 (2001).


    Google Scholar
     

  • 132.

    Goller, R., Wilcke, W., Fleischbein, K., Valarezo, C. & Zech, W. Dissolved nitrogen, phosphorus, and sulfur forms in the ecosystem fluxes of a montane forest in Ecuador. Biogeochemistry 77, 57–89 (2006).


    Google Scholar
     

  • 133.

    Aragão, L. E. O. C. The rainforest’s water pump. Nature 489, 217–218 (2012).


    Google Scholar
     

  • 134.

    Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).


    Google Scholar
     

  • 135.

    Giertz, S., Junge, B. & Diekkrüger, B. Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa. Phys. Chem. Earth Parts A/B/C 30, 485–496 (2005).


    Google Scholar
     

  • 136.

    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).


    Google Scholar
     

  • 137.

    Kassa, H., Frankl, A., Dondeyne, S., Poesen, J. & Nyssen, J. Sediment yield at southwest Ethiopia’s forest frontier. Land Degrad. Dev. 30, 695–705 (2019).


    Google Scholar
     

  • 138.

    Molina, A., Vanacker, V., Balthazar, V., Mora, D. & Govers, G. Complex land cover change, water and sediment yield in a degraded Andean environment. J. Hydrol. 472–473, 25–35 (2012).


    Google Scholar
     

  • 139.

    Labrière, N., Locatelli, B., Laumonier, Y., Freycon, V. & Bernoux, M. Soil erosion in the humid tropics: A systematic quantitative review. Agric. Ecosyst. Environ. 203, 127–139 (2015).


    Google Scholar
     

  • 140.

    Islam, K. R. & Weil, R. R. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agric. Ecosyst. Environ. 79, 9–16 (2000).


    Google Scholar
     

  • 141.

    Le Bissonnais, Y. et al. Soil aggregate stability in Mediterranean and tropical agro-ecosystems: effect of plant roots and soil characteristics. Plant Soil 424, 303–317 (2018).


    Google Scholar
     

  • 142.

    Garcı́a-Oliva, F., Sanford, R. L. & Kelly, E. Effects of slash-and-burn management on soil aggregate organic C and N in a tropical deciduous forest. Geoderma 88, 1–12 (1999).


    Google Scholar
     

  • 143.

    Sidle, R. C. et al. Erosion processes in steep terrain — Truths, myths, and uncertainties related to forest management in Southeast Asia. For. Ecol. Manag. 224, 199–225 (2006).


    Google Scholar
     

  • 144.

    Nagy, R. C. et al. Soil carbon dynamics in soybean cropland and forests in Mato Grosso, Brazil. J. Geophys. Res. Biogeosci. 123, 18–31 (2018).


    Google Scholar
     

  • 145.

    Driessen, P. M. Lecture Notes on the Major Soils of the World (Food and Agriculture Organization of the United Nations, 2001).

  • 146.

    Tisdall, J. M. & Oades, J. M. Organic matter and water-stable aggregates in soils. J. Soil. Sci. 33, 141–163 (1982).


    Google Scholar
     

  • 147.

    Haileslassie, A., Priess, J., Veldkamp, E., Teketay, D. & Lesschen, J. P. Assessment of soil nutrient depletion and its spatial variability on smallholders’ mixed farming systems in Ethiopia using partial versus full nutrient balances. Agric. Ecosyst. Environ. 108, 1–16 (2005).


    Google Scholar
     

  • 148.

    Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).


    Google Scholar
     

  • 149.

    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).


    Google Scholar
     

  • 150.

    Powers, J. S. & Marín-Spiotta, E. Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annu. Rev. Ecol. Evol. Syst. 48, 497–519 (2017).


    Google Scholar
     

  • 151.

    Russell, A. E. & Raich, J. W. Rapidly growing tropical trees mobilize remarkable amounts of nitrogen, in ways that differ surprisingly among species. Proc. Natl. Acad. Sci. USA 109, 10398–10402 (2012).


    Google Scholar
     

  • 152.

    Saynes, V., Hidalgo, C., Etchevers, J. D. & Campo, J. E. Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico. Appl. Soil. Ecol. 29, 282–289 (2005).


    Google Scholar
     

  • 153.

    Barron, A. R. et al. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nat. Geosci. 2, 42–45 (2009).


    Google Scholar
     

  • 154.

    Szott, L. T., Palm, C. A. & Buresh, R. J. Ecosystem fertility and fallow function in the humid and subhumid tropics. Agrofor. Syst. 47, 163–196 (1999).


    Google Scholar
     

  • 155.

    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).


    Google Scholar
     

  • 156.

    Lawrence, D. & Schlesinger, W. H. Changes in soil phosphorus during 200 years of shifting cultivation in Indonesia. Ecology 82, 2769–2780 (2001).


    Google Scholar
     

  • 157.

    Markewitz, D., Figueiredo, R., de, O. & Davidson, E. A. CO2-driven cation leaching after tropical forest clearing. J. Geochem. Explor. 88, 214–219 (2006).


    Google Scholar
     

  • 158.

    Markewitz, D. et al. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed. Nature 410, 802–805 (2001).


    Google Scholar
     

  • 159.

    Orihuela-Belmonte, D. E. et al. Carbon stocks and accumulation rates in tropical secondary forests at the scale of community, landscape and forest type. Agric. Ecosyst. Environ. 171, 72–84 (2013).


    Google Scholar
     

  • 160.

    Davidson, E. A. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).


    Google Scholar
     

  • 161.

    Lu, D., Moran, E. & Mausel, P. Linking Amazonian secondary succession forest growth to soil properties. Land Degrad. Dev. 13, 331–343 (2002).


    Google Scholar
     

  • 162.

    Mekuria, W., Veldkamp, E., Corre, M. D. & Haile, M. Restoration of ecosystem carbon stocks following exclosure establishment in communal grazing lands in Tigray, Ethiopia. Soil Sci. Soc. Am. J. 75, 246–256 (2011).


    Google Scholar
     

  • 163.

    Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).


    Google Scholar
     

  • 164.

    Palm, C. A. et al. Nitrous oxide and methane fluxes in six different land use systems in the Peruvian Amazon. Glob. Biogeochem. Cycles 16, 1073 (2002).


    Google Scholar
     

  • 165.

    Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W. & Vertessy, R. A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 310, 28–61 (2005).


    Google Scholar
     

  • 166.

    Ogden, F. L., Crouch, T. D., Stallard, R. F. & Hall, J. S. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water Resour. Res. 49, 8443–8462 (2013).


    Google Scholar
     

  • 167.

    Lacombe, G. et al. Contradictory hydrological impacts of afforestation in the humid tropics evidenced by long-term field monitoring and simulation modelling. Hydrol. Earth Syst. Sci. 20, 2691–2704 (2016).


    Google Scholar
     

  • 168.

    de Blécourt, M., Gröngröft, A., Baumann, S. & Eschenbach, A. Losses in soil organic carbon stocks and soil fertility due to deforestation for low-input agriculture in semi-arid southern Africa. J. Arid. Environ. 165, 88–96 (2019).


    Google Scholar
     

  • 169.

    Garcin, Y. et al. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. Proc. Natl Acad. Sci. USA 115, 3261–3266 (2018).


    Google Scholar
     

  • 170.

    Bayon, G. et al. Intensifying weathering and land use in Iron Age Central Africa. Science 335, 1219–1222 (2012).


    Google Scholar
     

  • 171.

    Beach, T., Dunning, N., Luzzadder-Beach, S., Cook, D. E. & Lohse, J. Impacts of the ancient Maya on soils and soil erosion in the central Maya Lowlands. Catena 65, 166–178 (2006).


    Google Scholar
     

  • 172.

    Lombardo, U. & Prümers, H. Pre-Columbian human occupation patterns in the eastern plains of the Llanos de Moxos, Bolivian Amazonia. J. Archaeol. Sci. 37, 1875–1885 (2010).


    Google Scholar
     

  • 173.

    Arroyo-Kalin, M. The Amazonian formative: crop domestication and anthropogenic soils. Diversity 2, 473–504 (2010).


    Google Scholar
     

  • 174.

    Glaser, B. & Birk, J. J. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim. Cosmochim. Acta 82, 39–51 (2012).


    Google Scholar
     

  • 175.

    Richter, D. D. & Markewitz, D. How deep is soil? BioScience 45, 600–609 (1995).


    Google Scholar
     

  • 176.

    Borneman, J. & Triplett, E. W. Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl. Environ. Microbiol. 63, 2647–2653 (1997).


    Google Scholar
     

  • 177.

    Powers, J. S. & Veldkamp, E. Regional variation in soil carbon and δ13C in forests and pastures of northeastern Costa Rica. Biogeochemistry 72, 315–336 (2005).


    Google Scholar
     

  • 178.

    Lucas, Y. The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu. Rev. Earth Planet. Sci. 29, 135–163 (2001).


    Google Scholar
     

  • 179.

    Kleber, M., Schwendenmann, L., Veldkamp, E., Rößner, J. & Jahn, R. Halloysite versus gibbsite: Silicon cycling as a pedogenetic process in two lowland neotropical rain forest soils of La Selva, Costa Rica. Geoderma 138, 1–11 (2007).


    Google Scholar
     

  • 180.

    Lucas, Y., Luizao, F. J., Chauvel, A., Rouiller, J. & Nahon, D. The relation between biological activity of the rain forest and mineral composition of soils. Science 260, 521–523 (1993).


    Google Scholar
     

  • 181.

    Bouma, J. et al. Hydropedological insights when considering catchment classification. Hydrol. Earth Syst. Sci. 15, 1909–1919 (2011).


    Google Scholar
     

  • 182.

    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).


    Google Scholar
     

  • 183.

    Jenny, H. Factors of Soil Formation. A System of Quantitative Pedology (McGraw-Hill, 1941).

  • 184.

    de Blécourt, M., Brumme, R., Xu, J., Corre, M. D. & Veldkamp, E. Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations. PLoS ONE 8, e69357 (2013).


    Google Scholar
     

  • 185.

    Darras, K. F. A. et al. Reducing fertilizer and avoiding herbicides in oil palm plantations — Ecological and economic valuations. Front. For. Glob. Change 2, 65 (2019).


    Google Scholar
     

  • 186.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).


    Google Scholar
     

  • 187.

    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).


    Google Scholar
     

  • 188.

    IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (FAO, 2015).

  • 189.

    FAO. Global Forest Resources Assessment 2015: How are the World’s Forests Changing? (FAO, 2016).

  • 190.

    Saikh, H., Varadachari, C. & Ghosh, K. Changes in carbon, nitrogen and phosphorus levels due to deforestation and cultivation: a case study in Simlipal National Park, India. Plant Soil 198, 137–145 (1998).


    Google Scholar
     

  • 191.

    Paul, S., Veldkamp, E. & Flessa, H. Differential response of mineral-associated organic matter in tropical soils formed in volcanic ashes and marine Tertiary sediment to treatment with HCl, NaOCl, and Na4P2O7. Soil Biol. Biochem. 40, 1846–1855 (2008).


    Google Scholar
     

  • 192.

    Soil Survey Staff. Keys to Soil Taxonomy (US Department of Agriculture, Natural Resources Conservation Service, 2014).

  • 193.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).


    Google Scholar
     

  • 194.

    Alston, L. J., Libecap, G. D. & Mueller, B. Land reform policies, the sources of violent conflict, and implications for deforestation in the Brazilian Amazon. J. Environ. Econ. Manag. 39, 162–188 (2000).


    Google Scholar
     

  • 195.

    Gatto, M., Wollni, M. & Qaim, M. Oil palm boom and land-use dynamics in Indonesia: The role of policies and socioeconomic factors. Land Use Policy 46, 292–303 (2015).


    Google Scholar
     

  • 196.

    Jantalia, C. P. et al. Tillage effect on C stocks of a clayey Oxisol under a soybean-based crop rotation in the Brazilian Cerrado region. Soil Tillage Res. 95, 97–109 (2007).


    Google Scholar
     

  • 197.

    Six, J. et al. Soil organic matter, biota and aggregation in temperate and tropical soils – Effects of no-tillage. Agronomie 22, 755–775 (2002).


    Google Scholar
     

  • 198.

    Comte, I. et al. Physicochemical properties of soils in the Brazilian Amazon following fire-free land preparation and slash-and-burn practices. Agric. Ecosyst. Environ. 156, 108–115 (2012).


    Google Scholar
     

  • 199.

    Abu Bakar, R., Darus, S. Z., Kulaseharan, S. & Jamaluddin, N. Effects of ten year application of empty fruit bunches in an oil palm plantation on soil chemical properties. Nutr. Cycling Agroecosyst. 89, 341–349 (2011).


    Google Scholar
     

  • 200.

    Clay, D., Reardon, T. & Kangasniemi, J. Sustainable intensification in the highland tropics: Rwandan farmers’ investments in land conservation and soil fertility. Econ. Dev. Cult. Change 46, 351–377 (1998).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *