• 1.

    Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Mamassian, P. Visual confidence. Annu. Rev. Vis. Sci. 2, 459–481 (2016).

    Article 

    Google Scholar
     

  • 3.

    Sanders, J. I., Hangya, B. & Kepecs, A. Signatures of a statistical computation in the human sense of confidence. Neuron 90, 499–506 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Adler, W. & Ma, W. J. Limitations of proposed signatures of Bayesian confidence. Preprint at bioRxiv https://doi.org/10.1101/218222 (2018).

  • 5.

    Rahnev, D. & Denison, R. N. Suboptimality in perceptual decision making. Behav. Brain Sci. 41, 1–66 (2018).

    Article 

    Google Scholar
     

  • 6.

    De Finetti, B. La prévision: ses lois logiques, ses sources subjectives. Annales de l’institut Henri Poincaré 7, 1–68 (1937).


    Google Scholar
     

  • 7.

    Savage, L. J. Elicitation of personal probabilities and expectations. J. Am. Stat. Assoc. 66, 783–801 (1971).

    Article 

    Google Scholar
     

  • 8.

    Drugowitsch, J., Moreno-Bote, R. R. & Pouget, A. Relation between belief and performance in perceptual decision making. PLoS ONE 9, e96511 (2014).

    Article 

    Google Scholar
     

  • 9.

    Fleming, S. M. & Lau, H. C. How to measure metacognition. Front. Hum. Neurosci. 8, 1–9 (2014).

    Article 

    Google Scholar
     

  • 10.

    Barthelmé, S. & Mamassian, P. Evaluation of objective uncertainty in the visual system. PLoS Comput. Biol. 5, e1000504 (2009).

    Article 

    Google Scholar
     

  • 11.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).

    Article 

    Google Scholar
     

  • 12.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach. (Springer New York, 2002).

  • 13.

    Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J. & Friston, K. J. Bayesian model selection for group studies. NeuroImage 46, 1004–1017 (2009).

    Article 

    Google Scholar
     

  • 14.

    Rigoux, L., Stephan, K. E., Friston, K. J. & Daunizeau, J. Bayesian model selection for group studies – revisited. NeuroImage 84, 971–985 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Nelson, T. O. Metamemory: a theoretical framework and new findings in Psychology of Learning and Motivation. 26, 125–173 (Elsevier, 1990).

  • 16.

    Ulehla, Z. J. Optimality of perceptual decision criteria. J. Exp. Psychol. 71, 564–569 (1966).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Zhang, H., Daw, N. D. & Maloney, L. T. Human representation of visuo-motor uncertainty as mixtures of orthogonal basis distributions. Nat. Neurosci. 18, 1152–1158 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Fleming, S. M. & Daw, N. D. Self-evaluation of decision performance: a general Bayesian framework for metacognitive computation. Psychol. Rev. 124, 1–59 (2016).


    Google Scholar
     

  • 19.

    Adler, W. T. & Ma, W. J. Comparing Bayesian and non-Bayesian accounts of human confidence reports. PLoS Comput. Biol. 14, e1006572 (2018).

    Article 

    Google Scholar
     

  • 20.

    Zhang, H. & Maloney, L. T. Ubiquitous log odds: a common representation of probability and frequency distortion in perception, action, and cognition. Front. Neurosci. 6, 1–14 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    De Gardelle, V., Le Corre, F. & Mamassian, P. Confidence as a common currency between vision and audition. PLoS ONE 11, e0147901 (2016).

    Article 

    Google Scholar
     

  • 22.

    de Gardelle, V. & Mamassian, P. Does confidence use a common currency across two visual tasks? Psychol. Sci. 25, 1286–1288 (2014).

    Article 

    Google Scholar
     

  • 23.

    Meyniel, F. & Dehaene, S. Brain networks for confidence weighting and hierarchical inference during probabilistic learning. Proc. Natl Acad. Sci. USA 114, E3859–E3868 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Bang, D. & Fleming, S. M. Distinct encoding of decision confidence in human medial prefrontal cortex. Proc. Natl Acad. Sci. USA 115, 6082–6087 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Laquitaine, S. & Gardner, J. L. A switching observer for human perceptual estimation. Neuron 97, 462–474.e6 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Gardner, J. L. Optimality and heuristics in perceptual neuroscience. Nat. Neurosci. 22, 514–523 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Maloney, L. T. & Mamassian, P. Bayesian decision theory as a model of human visual perception: testing Bayesian transfer. Vis. Neurosci. 26, 147 (2009).

    Article 

    Google Scholar
     

  • 28.

    Huys, Q. J. M., Maia, T. V. & Frank, M. J. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19, 404–413 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Meyniel, F., Schlunegger, D. & Dehaene, S. The sense of confidence during probabilistic learning: a normative account. PLoS Comput. Biol. 11, 1–25 (2015).

    Article 

    Google Scholar
     

  • 30.

    Aitchison, L., Bang, D., Bahrami, B. & Latham, P. E. Doubly Bayesian analysis of confidence in perceptual decision-making. PLoS Comput. Biol. 11, 1–23 (2015).

    Article 

    Google Scholar
     

  • 31.

    Kleiner, M., Brainard, D. & Pelli, D. What’s new in psychtoolbox-3? Perception 36, ECVP Abstract Supplement (2007).

  • 32.

    Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Efron, B. Better bootstrap confidence intervals. J. Am. Stat. Assoc. 82, 171–185 (1987).

    Article 

    Google Scholar
     

  • 34.

    Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D. & Iverson, G. Bayesian t tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 16, 225–237 (2009).

    Article 

    Google Scholar
     

  • 35.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *