Does fertilization with dehydrated sewage sludge affect Terminalia argentea (Combretaceae) and associated arthropods community in a degraded area?


  • 1.

    Frišták, V., Pipíška, M. & Soja, G. Pyrolysis treatment of sewage sludge: a promising way to produce phosphorus fertilizer. J. Clean. Prod. 172, 1772–1778. https://doi.org/10.1016/j.jclepro.2017.12.015 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Antonkiewicz, J. et al. A mixture of cellulose production waste with municipal sewage as new material for an ecological management of wastes. Ecotoxicol. Environ. Saf. 169, 607–614. https://doi.org/10.1016/j.ecoenv.2018.11.070 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Kimberley, M. O., Wang, H., Wilks, P. J., Fisher, C. R. & Magesan, G. N. Economic analysis of growth response from a pine plantation forest applied with biosolids. Forest Ecol. Manag. 189, 345–351. https://doi.org/10.1016/j.foreco.2003.09.003 (2004).

    Article 

    Google Scholar
     

  • 4.

    Caldeira, M. V. W. et al. Lodo de esgoto como componente de substrato para produção de mudas de Acacia mangium Wild. Comun. Sci. 5, 34–43 (2014).


    Google Scholar
     

  • 5.

    Silva, J. L. et al. Diversity of arthropods on Acacia mangium (Fabaceae) and production of this plant with dehydrated sewage sludge in degraded area. R. Soc. Open Sci. 7, 2. https://doi.org/10.1098/rsos.191196 (2020).

    Article 

    Google Scholar
     

  • 6.

    Nogueira, T. A. R. et al. Metais pesados e patógenos em milho e feijão caupi consorciados, adubados com lodo de esgoto. Rev. Bras. Eng. Agríc. Ambient. 11, 331–338. https://doi.org/10.1590/S1415-43662007000300014 (2007).

    Article 

    Google Scholar
     

  • 7.

    Lorenzi, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil (Instituto Plantarum, Nova, 2002).


    Google Scholar
     

  • 8.

    Boff, S., Graciolli, G., Boaretto, A. G. & Marques, M. R. Visiting insects of exudated gums by Terminalia argentea Mart. & Zucc (Combretaceae). Rev. Bras. Entomol. 52, 477–479. https://doi.org/10.1590/S0085-56262008000300025 (2008).

    Article 

    Google Scholar
     

  • 9.

    Santos, M. S. et al. Riqueza de formigas (Hymenoptera, Formicidade) da serapilheira em fragmentos de floresta semidecídua da Mata Atlântica na região do Alto do Rio Grande, MG, Brasil. Iheringi. Sér. Zool. 96, 95–101. https://doi.org/10.1590/S0073-47212006000100017 (2006).

    Article 

    Google Scholar
     

  • 10.

    Davis, A. J. et al. Dung beetles as indicators of change in the forests of northern Borneo. J. Appl. Ecol. 38, 593–616. https://doi.org/10.1046/j.1365-2664.2001.00619.x (2001).

    Article 

    Google Scholar
     

  • 11.

    Bowers, M. D. & Stamp, N. E. Effects of plant-age, genotype, and herbivory on Plantago performance and chemistry. Ecology 74, 1778–1791. https://doi.org/10.2307/1939936 (1993).

    Article 

    Google Scholar
     

  • 12.

    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335, https://doi.org/10.1146/annurev.ecolsys.27.1.305 (1996.)

  • 13.

    Leite, G. L. D., Picanço, M., Zanuncio, J. C., Moreira, M. D. & Jham, G. N. Hosting capacity of horticultural plants for insect pests in Brazil. Chil. J. Agric. Res. 71, 383–389. https://doi.org/10.4067/S0718-58392011000300006 (2011).

    Article 

    Google Scholar
     

  • 14.

    Mass, K. D. B. Biossólido Como Substrato na Produção de Mudas de Timburi. Graduate theses and dissertations (2010).

  • 15.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).


    Google Scholar
     

  • 16.

    Espírito Santo, M. M., Neves, F. S., Andrade Neto, F. R. & Fernandes, G. W. Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia 153, 353–364. https://doi.org/10.1007/s00442-007-0737-8 (2007).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Leite, G. L. D. et al. Architectural diversity and galling insects on Caryocar brasiliense trees. Sci. Rep. 7, 16677. https://doi.org/10.1038/s41598-017-16954-6 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Morris, R. J., Lewis, O. T. & Godfray, H. C. J. Experimental evidence for apparent competition in a tropical forest food web. Nature 428, 310–313. https://doi.org/10.1038/nature02394 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Leite, G. L. D. et al. Habitat complexity and Caryocar brasiliense herbivores (Insecta; Arachnida; Araneae). Fla. Entomol. 95, 819–830. https://doi.org/10.1653/024.095.0402 (2012).

    Article 

    Google Scholar
     

  • 20.

    Auslander, M., Nevo, E. & Inbar, M. The effects of slope orientation on plant growth, developmental instability and susceptibility to herbivores. J. Arid Environ. 55, 405–416. https://doi.org/10.1016/S0140-1963(02)00281-1 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Leite, G. L. D. et al. Seasonal damage caused by herbivorous insects on Caryocar brasiliense (Caryocaraceae) trees in the Brazilian savanna. Rev. Colombiana Entomol. 38, 108–113 (2012).


    Google Scholar
     

  • 22.

    Kitahara, M. & Fujii, K. An island biogeographical approach to the analysis of butterfy community patterns in newly designed parks. Res. Popul. Ecol. 91, 23–35. https://doi.org/10.1007/BF02765247 (1997).

    Article 

    Google Scholar
     

  • 23.

    Burns, K. C. Native–exotic richness relationships: a biogeographic approach using turnover in island plant populations. Ecology 97, 2932–2938, https://doi.org/10.1002/ecy.1579 (2016)

  • 24.

    Taiz, L., Zeiger, E., Moller, I. M. & Murphy, A. Fisiologia e desenvolvimento vegetal. (Artmed, 2017).

  • 25.

    Tiedge, K. & Lohaus, G. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators’ preferences than organic acids and inorganic ions. PLoS ONE 12, 1–25. https://doi.org/10.1371/journal.pone.0176865 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Stabler, D., Power, E. F., Borland, A. M., Barnes, J. D. & Wright, G. A. A method for analysing small samples of floral pollen for free and protein-bound amino acids. Methods Ecol. Evol. 9, 430–438. https://doi.org/10.1111/2041-210X.12867 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Kitamura, A. E., Alves, M. C., Sanches, S., Akihiro, L. G. & Antonio, P. G. Recuperação de um solo degradado com a aplicação de adubos verdes e lodo de esgoto. Rev. Bras. Cienc. Solo 32, 405–416. https://doi.org/10.1590/S0100-06832008000100038 (2008).

    Article 

    Google Scholar
     

  • 28.

    Serra, B. D. V. & Campos, L. A. Polinização entomófila de abobrinha, Cucurbita moschata (Cucurbitaceae). Neotrop. Entomol. 39, 153–159. https://doi.org/10.1590/S1519-566X2010000200002 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Silva, F. W. S. et al. Spatial distribution of arthropods on Acacia mangium (Fabales: Fabaceae) trees as windbreaks in the Cerrado. Fla. Entomol. 97, 631–638. https://doi.org/10.1653/024.097.0240 (2014).

    Article 

    Google Scholar
     

  • 30.

    Damascena, J. G. et al. Spatial distribution of phytophagous insects, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado. Fla. Entomol. 100, 558–565. https://doi.org/10.1653/024.100.0311 (2017).

    Article 

    Google Scholar
     

  • 31.

    Gratton, C. & Denno, R. F. Seasonal shift from bottom-up to top-down impact in phytophagous insect populations. Oecology 134, 487–495. https://doi.org/10.1007/s00442-002-1137-8 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Marquis, R. J., Diniz, I. R. & Morais, H. C. Patterns and correlates of the interspecific variation in foliar insect herbivory and pathogen attack in Brazilian Cerrado. J. Trop. Ecol. 17, 127–148. https://doi.org/10.1017/S0266467401001080 (2001).

    Article 

    Google Scholar
     

  • 33.

    Landis, D., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Ann. Rev. Entomol. 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Langellotto, G. A. Aggregation of Invertebrate Predators in Complex-Structured Habitats: Role of Altered Cannibalism, Intraguild Predation, Prey Availability, and Microclimate. Graduate theses and dissertations (2003).

  • 35.

    Halaj, J., Halpern, C. B. & Yi, H. Responses of litter-dwelling spiders and carabid beetles to varying levels and patterns of green-tree retention. Forest Ecol. Manag. 255, 887–900. https://doi.org/10.1016/j.foreco.2007.09.083 (2008).

    Article 

    Google Scholar
     

  • 36.

    Sunderland, K. & Samu, F. Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol. Exp. Appl. 95, 1–13. https://doi.org/10.1046/j.1570-7458.2000.00635.x (2000).

    Article 

    Google Scholar
     

  • 37.

    Amalin, D. M., Reiskind, J., Peña, J. E. & Mcsorley, R. Predatory behavior of three species of sac spiders attacking citrus leafminer. J. Arachnol. 29, 72–81. https://doi.org/10.1636/0161-8202(2001)029[0072:PBOTSO]2.0.CO;2 (2001).

    Article 

    Google Scholar
     

  • 38.

    Hogg, B. N., Mills, N. J. & Daane, K. M. Temporal patterns in the abundance and species composition of spiders on host plants of the invasive moth Epiphyas postvittana (Lepidoptera: Tortricidae). Environ. Entomol. 146, 502–510. https://doi.org/10.1093/ee/nvx065 (2017).

    Article 

    Google Scholar
     

  • 39.

    Del-Claro, K. & Oliveira, P. S. Conditional outcomes in a neotropical treehopper-ant association: temporal and species-specific variation in ant protection and homopteran fecundity. Oecologia 124, 156–165. https://doi.org/10.1007/s004420050002 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Schmitz, O. J. Indirect Effects in Communities and Ecosystems: The Role of Trophic and Nontrophic Interactions (Princeton University Press, Princeton, 2006).


    Google Scholar
     

  • 41.

    Costa, S. S. D. Insects and growth of Terminalia argentea Mart & Zucc (Combretaceae) fertilized with dehydrated sewage sludge. Graduate theses and dissertations (2019).

  • 42.

    Economo, E. P. et al. Global phylogenetic structure of the hyperdiverse ant genus Pheidole reveals the repeated evolution of macroecological patterns. Proc. R. Soc. B. 282, 1–10. https://doi.org/10.1098/rspb.2014.1416 (2014).

    Article 

    Google Scholar
     

  • 43.

    Pérez-Lachaud, G. & Lachaud, J. P. Arboreal ant colonies as ‘hot-points’ of cryptic diversity for myrmecophiles: the weaver ant Camponotus sp. aff. textor and its interaction network with its associates. PLoS ONE 9, 1–8. https://doi.org/10.1371/journal.pone.0100155 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Chomicki, G., Ward, P. S. & Renner, S. S. Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics. Proc. R. Soc. B. 282, 1–9. https://doi.org/10.1098/rspb.2015.2200 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Sanches, A. Fidelity and promiscuity in an ant-plant mutualism: a case study of triplaris and Pseudomyrmex. PLoS ONE 10, 1–19. https://doi.org/10.1371/journal.pone.0143535 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Miranda, M. M. M., Picanço, M., Leite, G. L. D., Zanuncio, J. C. & Clercq, P. Sampling and non-action levels for predators and parasitoids of virus vectors and leaf miners of tomato in Brazil. Med. Facul. Landb. Univ. Gent 63, 519–523 (1998).


    Google Scholar
     

  • 47.

    Leite, G. L. D., Oliveira, I. R., Guedes, R. N. C. & Picanço, M. Comportamento de predação de Protonectarina sylveirae (Saussure) (Hymenoptera: Vespidae) em mostarda. Agro-Ciencia (Chillán) 17, 93–96 (2001).


    Google Scholar
     

  • 48.

    Picanço, M., Ribeiro, L. J., Leite, G. L. D. & Gusmão, M. R. Seletividade de inseticidas a Polybia ignobilis (Haliday) (Hymenoptera: Vespidae) predador de Ascia monuste orseis (Godart) (Lepidoptera: Pieridae). An. Soc. Entomol. Bras. 27, 85–90. https://doi.org/10.1590/S0301-80591998000100011 (1998).

    Article 

    Google Scholar
     

  • 49.

    Picanço, M. C. et al. Ecology of Vespidae (Hymenoptera) predators in Coffea arabica plantations. Sociobiology 59, 1269–1280 (2012).


    Google Scholar
     

  • 50.

    Condon, M. A. et al. Lethal interactions between parasites and prey increase niche diversity in a tropical community. Science 343, 1240–1244. https://doi.org/10.1126/science.1245007 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Larsen, K. J., Purrington, F. F., Brewer, S. R. & Taylor, D. H. Influence of sewage sludge and fertilizer on the ground geetle (Coleoptera: Carabidae) fauna of an old-field community. Environ. Entomol. 25, 452–459. https://doi.org/10.1093/ee/25.2.452 (1996).

    Article 

    Google Scholar
     

  • 52.

    Milton, S. J., Dean, W. R. J., du Plessis, M. A. & Siegfried, W. R. A conceptual model of arid rangeland degradation. Bioscience 44, 70–76. https://doi.org/10.2307/1312204 (1994).

    Article 

    Google Scholar
     

  • 53.

    Whisenant, S. G. Repairing damaged wildlands: a process-oriented, landscape-scale approach. Restor. Ecol. 9, 249–249. https://doi.org/10.1046/j.1526-100x.2001.009002249.x (1999).

    Article 

    Google Scholar
     

  • 54.

    Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 22, 711–728. https://doi.org/10.1127/0941-2948/2013/0507 (2013).

    Article 

    Google Scholar
     

  • 55.

    Santana, P. H. L., Frazão, L. A., Santos, L. D. F., Fernandes, L. A. & Sampaio, R. A. Soil attributes and production of Eucalyptus in monoculture and silvopastoral systems in the north of Minas Gerais, Brazil. J. Agric. Sci. Technol. 6, 361–370. https://doi.org/10.17265/2161-6264/2016.06.001 (2016).

    Article 

    Google Scholar
     

  • 56.

    Kopittke, P. M. & Menzies, N. W. A review of the use of the basic cation saturation ratio and the “ideal” soil. Soil Sci. Soc. Am. J. 71, 259–265. https://doi.org/10.2136/sssaj2006.0186 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 57.

    Sastawa, B. M., Lawan, M. & Maina, Y. T. Management of insect pests of soybean: effects of sowing date and intercropping on damage and grain yield in the Nigerian Sudan savanna. Crop Prot. 23, 155–161. https://doi.org/10.1016/j.cropro.2003.07.007 (2004).

    Article 

    Google Scholar
     

  • 58.

    Mizumachi, E., Mori, A., Osawa, N., Akiyama, R. & Tokuchi, N. Shoot development and extension of Quercus serrata saplings in response to insect damage and nutrient conditions. Ann. Bot. 98, 219–226. https://doi.org/10.1093/aob/mcl091 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Krebs, C. J. Bray-Curtis cluster analysis. 1. Biodiversity Pro Versão 2. https://biodiversity-pro.software.informer.com (1989).

  • 60.

    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432. https://doi.org/10.2307/1934352 (1973).

    Article 

    Google Scholar
     

  • 61.

    Jost, L. Entropy and diversity. Oikos 113, 363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x (2006).

    Article 

    Google Scholar
     

  • 62.

    Begon, M., Townsend, C. R., Harper, J. L. Ecologia: de indivíduos a ecossistemas. (Artmed, 2007).

  • 63.

    Lazo, J. A., Valdés, N. V., Sampaio, R. A. & Leite, G. L. D. Diversidad zoológica asociada a um silvopastoreo leucaena-guineacon diferentes edades de establecimiento. Pesq. Agropec. Bras. 42, 1667–1674. https://doi.org/10.1590/S0100-204X2007001200001 (2007).

    Article 

    Google Scholar
     

  • 64.

    Wilcoxon, F. Individual comparisons by ranking methods. Biometrics Bull. 1, 80–83. https://doi.org/10.2307/3001968 (1945).

    Article 

    Google Scholar
     

  • 65.

    SAEG—Sistema para Análises Estatísticas. https://arquivo.ufv.br/saeg/. (accessed on 30 june 2018) (2007).

  • 66.

    Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: Network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18. https://doi.org/10.18637/jss.v048.i04 (2012).

    Article 

    Google Scholar
     

  • 67.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2014).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *