Drought characteristics and its elevation dependence in the Qinghai–Tibet plateau during the last half-century


  • 1.

    Yao, N., Li, Y., Lei, T. & Peng, L. Drought evolution, severity and trends in mainland China over 1961–2013. Sci. Total. Environ. 616–617, 73–89. https://doi.org/10.1016/j.scitotenv.2017.10.327 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Yusa, A. et al. Climate change, drought and human health in Canada. Int. J. Environ. Res. Public Health. 12, 8359–8412. https://doi.org/10.3390/ijerph120708359 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Liu, L., Niu, Q., Heng, J., Li, H. & Xu, Z. Transition characteristics of the dry-wet regime and vegetation dynamic responses over the Yarlung Zangbo River Basin, Southeast Qinghai-Tibet Plateau. Remote Sens. https://doi.org/10.3390/rs11101254 (2019).

    Article 

    Google Scholar
     

  • 4.

    Dai, A. Drought under global warming: A review. Wiley. Interdiscip. Rev. Clim. Chang. 2, 45–65. https://doi.org/10.1002/wcc.81 (2011).

    Article 

    Google Scholar
     

  • 5.

    Chen, H. & Sun, J. Changes in drought characteristics over china using the standardized precipitation evapotranspiration index. J. Clim. 28, 5430–5447. https://doi.org/10.1175/jcli-d-14-00707.1 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Wang, B., Bao, Q., Hoskins, B., Wu, G. & Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 35, L14702. https://doi.org/10.1029/2008GL034330 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Yang, K. et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Change. 112, 79–91. https://doi.org/10.1016/j.gloplacha.2013.12.001 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Gao, Y., Li, X., Ruby Leung, L., Chen, D. & Xu, J. Aridity changes in the Tibetan Plateau in a warming climate. Environ. Res. Lett. 10, 034013. https://doi.org/10.1088/1748-9326/10/3/034013 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Li, L., Yang, S., Wang, Z., Zhu, X. & Tang, H. Evidence of warming and wetting climate over the Qinghai–Tibet plateau. Arct. Antarct. Alp. Res. 42, 449–457. https://doi.org/10.1657/1938-4246-42.4.449 (2010).

    Article 

    Google Scholar
     

  • 10.

    Fan, K. et al. Variation, causes and future estimation of surface soil moisture on the Tibetan Plateau. Acta. Geogr. Sin. 74, 520–533. https://doi.org/10.11821/dlxb201903009 (2019).

    Article 

    Google Scholar
     

  • 11.

    Yang, K. et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Change. 109, 517–534. https://doi.org/10.1007/s10584-011-0099-4 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Yin, Y., Wu, S., Zhao, D., Zheng, D. & Pan, T. Impact of climate change on actual evapotranspiration on the Tibetan Plateau during 1981–2010. Acta. Geogr. Sin. 67, 1471–1481. https://doi.org/10.11821/xb201211004 (2012).

    Article 

    Google Scholar
     

  • 13.

    Liu, X. et al. Regionalization and spatiotemporal variation of drought in china based on standardized precipitation evapotranspiration index (1961–2013). Adv. Meteorol. 1–18, 2015. https://doi.org/10.1155/2015/950262 (2015).

    Article 

    Google Scholar
     

  • 14.

    Liang, J. et al. Drought evolution characteristics on the Tibetan Plateau based on daily standardized precipitation evapotranspiration index. J. Glaciol. Geocryol. 40, 1100–1109. https://doi.org/10.7522/j.issn.1000-0240.2018.0412 (2018).

    Article 

    Google Scholar
     

  • 15.

    Yang, X. L. et al. Drought assessment and trends analysis from 20th century to 21st century over China. Proc. IAHS. 371, 89–94. https://doi.org/10.5194/piahs-371-89-2015 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Wang, H., Chen, Y., Pan, Y., Chen, Z. & Ren, Z. Assessment of candidate distributions for SPI/SPEI and sensitivity of drought to climatic variables in China. Int. J. Climatol. 39, 4392–4412. https://doi.org/10.1002/joc.6081 (2019).

    Article 

    Google Scholar
     

  • 17.

    Wang, W., Zhu, Y., Xu, R. & Liu, J. Drought severity change in China during 1961–2012 indicated by SPI and SPEI. Nat. Hazards. 75, 2437–2451. https://doi.org/10.1007/s11069-014-1436-5 (2014).

    Article 

    Google Scholar
     

  • 18.

    Wang, Z. et al. Does drought in China show a significant decreasing trend from 1961 to 2009?. Sci. Total Environ. 579, 314–324. https://doi.org/10.1016/j.scitotenv.2016.11.098 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Messerli, B. & Ives, J. D. Mountains of the World: A Global Priority. Parthenon, 510pp.

  • 20.

    Rangwala, I. & Miller, J. R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Change. 114, 527–547. https://doi.org/10.1007/s10584-012-0419-3 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change. 5, 424–430. https://doi.org/10.1038/NCLIMATE2563 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Barry, R. G. Recent advances in mountain climate research. Theor. Appl. Climatol. 110, 549–553. https://doi.org/10.1007/s00704-012-0695-x (2012).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Xu, Y., Ramanathan, V. & Washington, W. M. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols. Atmos. Chem. Phys. 16, 1303–1315. https://doi.org/10.5194/acp-16-1303-2016 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Ding, M., Li, L., Zhang, Y., Liu, L. & Wang, Z. Temperature change and its elevation dependency on the Tibetan plateau and its vicinity from 1971 to 2012. Resour. Sci. 36, 1509–1518 (2014).


    Google Scholar
     

  • 25.

    Zhang, X., Wang, L. & Chen, D. How does temporal trend of reference evapotranspiration over the Tibetan Plateau change with elevation?. Int. J. Climatol. 39, 2295–2305. https://doi.org/10.1002/joc.5951 (2019).

    Article 

    Google Scholar
     

  • 26.

    Li, X., Wang, L., Guo, X. & Chen, D. Does summer precipitation trend over and around the Tibetan Plateau depend on elevation?. Int. J. Climatol. 37, 1278–1284. https://doi.org/10.1002/joc.4978 (2017).

    Article 

    Google Scholar
     

  • 27.

    Yao, T., Lu, H., Feng, W. & Yu, Q. Evaporation abrupt changes in the Qinghai–Tibet Plateau during the last half-century. Sci. Rep. 9, 20181. https://doi.org/10.1038/s41598-019-56464-1 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Tian, P., Lu, H. & Xue, Y. Characterization of temperature difference between the neighbouring days in China and its potential driving factors. Int. J. Climatol. 39, 4659–4668. https://doi.org/10.1002/joc.6093 (2019).

    Article 

    Google Scholar
     

  • 29.

    Ding, J., Cuo, L., Zhang, Y. & Zhu, F. Monthly and annual temperature extremes and their changes on the Tibetan Plateau and its surroundings during 1963–2015. Sci. Rep. 8, 11860. https://doi.org/10.1038/s41598-018-30320-0 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Yao, T., Lu, H., Yu, Q. & Feng, W. Potential evapotranspiration characteristic and its abrupt change across the Qinghai-Tibetan Plateau and its surrounding areas in the last 50 years. Adv. Earth. Sci. 35, 534–546. https://doi.org/10.11867/j.issn.1001-8166.2020.031 (2020).

    Article 

    Google Scholar
     

  • 31.

    Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718. https://doi.org/10.1175/2009jcli2909.1 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Xu, K. et al. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 526, 253–264. https://doi.org/10.1016/j.jhydrol.2014.09.047 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Li, W., Yi, X., Hou, M., Chen, H. & Chen, Z. Standardized precipitation evapotranspiration index shows drought trends in China. Chin. J. Eco-Agric. 20, 643–649. https://doi.org/10.3724/SP.J.1011.2012.00643 (2012).

    Article 

    Google Scholar
     

  • 34.

    Begueria, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023. https://doi.org/10.1002/joc.3887 (2014).

    Article 

    Google Scholar
     

  • 35.

    Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94. https://doi.org/10.2307/210739 (1948).

    Article 

    Google Scholar
     

  • 36.

    Xu, C. Y. & Singh, V. P. Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol. Process. 15, 305–319. https://doi.org/10.1002/hyp.119 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Mavromatis, T. Drought index evaluation for assessing future wheat production in Greece. Int. J. Climatol. 27, 911–924. https://doi.org/10.1002/joc.1444 (2007).

    Article 

    Google Scholar
     

  • 38.

    Beguería, S. & Vicente-Serrano, S. M. SPEI: calculation of the standardised precipitation-evapotranspiration index. https://CRAN.R-project.org/package=SPEI (2017).

  • 39.

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Assoc. 63, 1379–1389. https://doi.org/10.1080/01621459.1968.10480934 (1968).

    MathSciNet 
    Article 
    MATH 

    Google Scholar
     

  • 40.

    Hurst, H. E. Long-Term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951).


    Google Scholar
     

  • 41.

    Mandelbr, B. & Wallis, J. R. Robustness of rescaled range R/S in measurement of noncyclic long run statistical dependence. Water. Resour. Res. 5, 967–988. https://doi.org/10.1029/WR005i005p00967 (1969).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Zhao, X., Li, Z. & Zhu, Q. Change of precipitation characteristics in the water-wind erosion crisscross region on the Loess Plateau, China, from 1958 to 2015. Sci. Rep. 7, 8048. https://doi.org/10.1038/s41598-017-08600-y (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2, 663–667. https://doi.org/10.1038/NCLIMATE1580 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654. https://doi.org/10.1038/s41586-019-1240-1 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Tang, Q. et al. Streamflow change on the Qinghai–Tibet Plateau and its impacts. Chin. Sci. Bull. 64, 2807–2821. https://doi.org/10.1360/TB-2019-0141 (2019).

    Article 

    Google Scholar
     

  • 46.

    Tian, P., Lu, H., Feng, W., Guan, Y. & Xue, Y. Large decrease in streamflow and sediment load of Qinghai–Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin. CATENA 187, 104340. https://doi.org/10.1016/j.catena.2019.104340 (2020).

    Article 

    Google Scholar
     

  • 47.

    Luo, Y. et al. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan–Pamir–North Karakoram. Sci. Rep. 8, 16470. https://doi.org/10.1038/s41598-018-34829-2 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. & Bierkens, M. F. P. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Chang. 4, 587–592. https://doi.org/10.1038/NCLIMATE2237 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 49.

    Li, Y., Wang, Z., Zhang, Y., Li, X. & Huang, W. Drought variability at various timescales over Yunnan Province, China: 1961–2015. Theor. Appl. Climatol. 138, 743–757. https://doi.org/10.1007/s00704-019-02859-z (2019).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Wu, Z. et al. Exploring spatiotemporal relationships among meteorological, agricultural, and hydrological droughts in Southwest China. Stoch. Environ. Res. Risk Assess. 30, 1033–1044. https://doi.org/10.1007/s00477-015-1080-y (2016).

    Article 

    Google Scholar
     

  • 51.

    Rong, Y., Gong, L. & Lu, S. Analysis on characteristics and causes of persistent meteorological and hydrological drought in Yunnan from 2009 to 2014. Water Resour. Prot. 34, 22–29. https://doi.org/10.3880/j.issn.1004-6933.2018.03.04 (2018).

    Article 

    Google Scholar
     

  • 52.

    Ford, T. W., McRoberts, D. B., Quiring, S. M. & Hall, R. E. On the utility of in situ soil moisture observations for flash drought early warning in Oklahoma, USA. Geophys. Res. Lett. 42, 9790–9798. https://doi.org/10.1002/2015GL066600 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Otkin, J. A. et al. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. Forest. Meteorol. 218–219, 230–242. https://doi.org/10.1016/j.agrformet.2015.12.065 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 54.

    Wang, L., Yuan, X., Xie, Z., Wu, P. & Li, Y. Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep. 6, 30571. https://doi.org/10.1038/srep30571 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Palmer. Meteorological drought. Weather Bureau Research Paper. 45 (1965).

  • 56.

    Patel, N. R. & Chopra, P. Analyzing spatial patterns of meteorological drought using standardized precipitation index. Theor. Appl. Climatol. 14, 329–336. https://doi.org/10.1002/met.33 (2007).

    Article 

    Google Scholar
     

  • 57.

    Sandholt, I., Rasmussen, K. & Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 79, 213–224. https://doi.org/10.1016/S0034-4257(01)00274-7 (2002).

    ADS 
    Article 

    Google Scholar
     

  • 58.

    Zhai, J. et al. Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J. Clim. 23, 649–663. https://doi.org/10.1175/2009JCLI2968.1 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 59.

    Zhao, H. et al. Timescale differences between SC-PDSI and SPEI for drought monitoring in China. Phys. Chem. Earth. 102, 48–58. https://doi.org/10.1016/j.pce.2015.10.022 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 60.

    Liu, L. et al. Changes in aridity and its driving factors in China during 1961–2016. Int. J. Climatol. 39, 50–60. https://doi.org/10.1002/joc.5781 (2019).

    Article 

    Google Scholar
     

  • 61.

    Yu, M., Li, Q., Hayes, M. J., Svoboda, M. D. & Heim, R. R. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration Index: 1951–2010?. Int. J. Climatol. 34, 545–558. https://doi.org/10.1002/joc.3701 (2014).

    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *