Early evidence of fire in south-western Europe: the Acheulean site of Gruta da Aroeira (Torres Novas, Portugal)


  • 1.

    Goldberg, P. et al. Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal South Africa. Archaeol. Anthropol. Sci. 1, 95–122 (2009).


    Google Scholar
     

  • 2.

    Bellomo, R. V. Methods of determining early hominid behavioral activities associated with the controlled use of fire at FxJj 20 Main, Koobi Fora Kenya. J. Hum. Evol. 27, 173–195 (1994).


    Google Scholar
     

  • 3.

    Wrangham, R. & Carmody, R. Human adaptation to the control of fire. Evol. Anthropol. 19, 187–199 (2010).


    Google Scholar
     

  • 4.

    Mallol, C., Marlowe, F. W., Wood, B. M. & Porter, C. C. Earth, wind, and fire: ethnoarchaeological signals of Hadza fires. J. Archaeol. Sci. 34, 2035–2052 (2007).


    Google Scholar
     

  • 5.

    Allué, E., Solé, A. & Burguet-Coca, A. Fuel exploitation among Neanderthals based on the anthracological record from Abric Romaní (Capellades, NE Spain). Quat. Int. 431, 6–15 (2017).


    Google Scholar
     

  • 6.

    Mentzer, S. M. Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites. J. Archaeol. Method Theory 21, 616–668 (2014).


    Google Scholar
     

  • 7.

    Stiner, M. C., Kuhn, S. L., Weiner, S. & Bar-Yosef, O. Differential burning, recrystallization, and fragmentation of archaeological bone. J. Archaeol. Sci. 22, 223–237 (1995).


    Google Scholar
     

  • 8.

    Aldeias, V. Experimental approaches to archaeological fire features and their behavioral relevance. Curr. Anthropol. 58, S191–S205 (2017).


    Google Scholar
     

  • 9.

    Roebroeks, W. & Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl. Acad. Sci. 108, 5209–5214 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Shahack-Gross, R., Berna, F., Karkanas, P. & Weiner, S. Bat guano and preservation of archaeological remains in cave sites. J. Archaeol. Sci. 31, 1259–1272 (2004).


    Google Scholar
     

  • 11.

    Karkanas, P., Bar-Yosef, O., Goldberg, P. & Weiner, S. Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. J. Archaeol. Sci. 27, 915–929 (2000).


    Google Scholar
     

  • 12.

    Gowlett, J. A. J., Harris, J. W. K., Walton, D. & Wood, B. A. Early archaeological sites, hominid remains and traces of fire from Chesowanja, Kenya. Nature 294, 125–129 (1981).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Hlubik, S. et al. Hominin fire use in the Okote member at Koobi Fora, Kenya: New evidence for the old debate. J. Hum. Evol. 133, 214–229 (2019).

    PubMed 

    Google Scholar
     

  • 14.

    Brain, C. K. & Sillen, A. Evidence from the Swartkrans cave for the earliest use of fire. Nature 336, 464–466 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Berna, F. et al. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc. Natl. Acad. Sci. USA 109, 1215–1220 (2012).

    ADS 

    Google Scholar
     

  • 16.

    Goren-Inbar, N. et al. Evidence of Hominin Control of Fire at Gesher Benot Ya’aqov, Israel. Science 80(304), 725–727 (2004).

    ADS 

    Google Scholar
     

  • 17.

    Alperson-Afil, N. Spatial analysis of fire: Archaeological approach to recognizing early fire. Curr. Anthropol. 58, S258–S266 (2017).


    Google Scholar
     

  • 18.

    Alperson-Afil, N., Richter, D. & Goren-Inbar, N. Evaluating the intensity of fire at the Acheulian site of Gesher Benot Ya’aqov—Spatial and thermoluminescence analyses. PLoS ONE https://doi.org/10.1371/journal.pone.0188091 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Karkanas, P. et al. Evidence for habitual use of fire at the end of the lower Paleolithic: Site-formation processes at Qesem Cave Israel. J. Hum. Evol. 53, 197–212 (2007).

    PubMed 

    Google Scholar
     

  • 20.

    Barkai, R., Rosell, J., Blasco, R. & Gopher, A. Fire for a reason: Barbecue at middle pleistocene Qesem cave Israel. Curr. Anthropol. 58, S314–S328. https://doi.org/10.1086/691211 (2017).

    Article 

    Google Scholar
     

  • 21.

    Rosas, A. et al. The ‘Sima del Elefante’ cave site at Atapuerca (Spain). Estud. Geológicos 62, 327–348 (2006).


    Google Scholar
     

  • 22.

    Roberts, M. B. & Parfitt, S. A. Boxgrove. A Middle Pleistocene hominid site at Eartham Quarry, Boxgrove, West Sussex. (English Heritage, 1999).

  • 23.

    Rhodes, S. E. et al. Fire in the Early Palaeolithic: Evidence from burnt small mammal bones at Cueva Negra del Estrecho del Río Quípar, Murcia, Spain. J. Archaeol. Sci. Reports 9, 427–436 (2016).


    Google Scholar
     

  • 24.

    Walker, M. J. et al. Combustion at the late early Pleistocene site of Cueva Negra del Estrecho del Río Quípar (Murcia, Spain). Antiquity 90, 571–589 (2016).


    Google Scholar
     

  • 25.

    Théry-Parisot, I., Chabal, L. & Chrzavzez, J. Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 291, 142–153 (2010).


    Google Scholar
     

  • 26.

    Preece, R. C., Gowlett, J. A. J., Parfitt, S. A., Bridgland, D. R. & Lewis, S. G. Humans in the Hoxnian: Habitat, context and fire use at Beeches Pit, West Stow, Suffolk UK. J. Quat. Sci. 21, 485–496 (2006).


    Google Scholar
     

  • 27.

    Moigne, A. M. et al. Bone retouchers from lower Palaeolithic sites: terra Amata, Orgnac 3, Cagny-l’Epinette and Cueva del Angel. Quat. Int. 409, 195–212. https://doi.org/10.1016/j.quaint.2015.06.059 (2016).

    Article 

    Google Scholar
     

  • 28.

    Hérisson, D. et al. The Acheulean site of “La Grande Vallée” at Colombiers (Vienne, France): stratigraphy, formation processes, preliminary dating and lithic industries. PALEO Rev. d’archéologie préhistorique 137–154 (2012).

  • 29.

    Monnier, J.-L. et al. Menez-Dregan 1 (Plouhinec, Finistère, France): un site d’habitat du Paléolithique inférieur en grotte marine Stratigraphie, structures de combustion, industries riches en galets aménagés. Anthropologie. 120, 237–262 (2016).


    Google Scholar
     

  • 30.

    Ravon, A.-L. Early human occupations at the westernmost tip of Eurasia: The lithic industries from Menez-Dregan I (Plouhinec, Finistère, France). C.R. Palevol. 18, 663–684 (2019).


    Google Scholar
     

  • 31.

    Moncel, M. H., Moigne, A. M. & Combier, J. Pre-Neandertal behaviour during isotopic stage 9 and the beginning of stage 8. New data concerning fauna and lithics in the different occupation levels of orgnac 3 (Ardèche South-East France): occupation types. J Archaeol Sci 32, 1283–1301 (2005).


    Google Scholar
     

  • 32.

    Barsky, D. The Caune de l’Arago stone industries in their stratigraphical context. C.R. Palevol. 12, 305–325 (2013).


    Google Scholar
     

  • 33.

    Falguères, C. et al. Combined ESR/U-series chronology of Acheulian hominid-bearing layers at Trinchera Galería site, Atapuerca, Spain. J. Hum. Evol. 65, 168–184 (2013).

    PubMed 

    Google Scholar
     

  • 34.

    Carbonell, E., Mosquera, M., Rodriguez, X. P., Sala, R. & van der Made, J. Out of Africa: The dispersal of the earliest technical systems reconsidered. J. Anthropol. Archaeol. 18, 119–136 (1999).


    Google Scholar
     

  • 35.

    Stringer, C. The status of Homo heidelbergensis (Schoetensack 1908). Evol. Anthropol. Issues, News, Rev. 21, 101–107 (2012).

  • 36.

    Daura, J. et al. New Middle Pleistocene hominin cranium from Gruta da Aroeira (Portugal). Proc. Natl. Acad. Sci. 114, 3397–3402 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Weiner, S. & Bar-Yosef, O. States of preservation of bones from prehistoric sites in the Near East: A survey. J. Archaeol. Sci. 17, 187–196 (1990).


    Google Scholar
     

  • 38.

    Zilhão, J., Maurício, J. & Souto, P. A arqueologia da Gruta do Almonda (Torres Novas). Resultados das escavações de 1988–89. in Actas das IV Jornadas Arqueológicas. 161–166 (Lisboa, Associação dos Arqueólogos Portugueses, 1991).

  • 39.

    Sawerysyn, J. La combustion du bois et ses impacts sur la qualité de l’air. Air Pur (2012).

  • 40.

    Ragland, K. W., Aerts, D. J. & Baker, A. J. Properties of wood for combustion analysis. Bioresour. Technol. 37, 161–168. https://doi.org/10.1016/0960-8524(91)90205-X (1991).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Vidal-Matutano, P., Blasco, R., Sañudo, P. & Fernández Peris, J. The anthropogenic use of firewood during the European Middle Pleistocene charcoal evidence from levels XIII and XI of Bolomor Cave, Eastern Iberia (230–160 ka). Environ. Archaeol. 24, 269–284 (2017). doi:10.1080/14614103.2017.1406026

  • 42.

    Martínez-Varea, C. M., Carrión Marco, Y. & Badal, E. Preservation and decay of plant remains in two Palaeolithic sites: Abrigo de la Quebrada and Cova de les Cendres (Eastern Spain) What information can be derived?. J. Archaeol. Sci. Reports https://doi.org/10.1016/j.jasrep.2019.102175 (2020).

    Article 

    Google Scholar
     

  • 43.

    Aichner, B., Herzschuh, U., Wilkes, H., Vieth, A. & Böhner, J. δD values of n-alkanes in Tibetan lake sediments and aquatic macrophytes—A surface sediment study and application to a 16ka record from Lake Koucha. Org Geochem. 41, 779–790 (2010).

    CAS 

    Google Scholar
     

  • 44.

    Ficken, K. J., Li, B., Swain, D. L. & Eglinton, G. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem. 31, 745–749 (2000).

    CAS 

    Google Scholar
     

  • 45.

    Meyers, P. A. & Ishiwatari, R. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20, 867–900 (1993).

    CAS 

    Google Scholar
     

  • 46.

    Baas, M., Pancost, R., Van Geel, B. & Sinninghe Damsté, J. S. A comparative study of lipids in Sphagnum species. Org. Geochem. 31, 535–541 (2000).

    CAS 

    Google Scholar
     

  • 47.

    Ficken, K. J. et al. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt Kenya East Africa. Org. Geochem. 29, 1701–1719 (1998).

    CAS 

    Google Scholar
     

  • 48.

    Whitehead, K. Marine organic geochemistry. In Chemical Oceanography and the Marine Carbon Cycle (eds. Emerson, S. & Hedges, J.) (Cambridge University Press, Cambridge, 2008).

  • 49.

    Bush, R. T. & McInerney, F. A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117, 161–179 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Daura, J. et al. A 400,000-year-old Acheulean assemblage associated with the Aroeira-3 human cranium (Gruta da Aroeira, Almonda karst system, Portugal). C.R. Palevol 17, 594–615 (2018).


    Google Scholar
     

  • 51.

    Dunlop, D. J. & Ödzemir, Ö. Rock Magnetism: Fundamentals and Frontiers (Cambridge University Press, Cambridge, 1997).


    Google Scholar
     

  • 52.

    Carrión Marco, Y. et al. Climate, environment and human behaviour in the Middle Palaeolithic of Abrigo de la Quebrada (Valencia, Spain). The evidence from charred plant and micromammal remains. Quat. Sci. Rev. 217, 152–168. https://doi.org/10.1016/j.quascirev.2018.11.032 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Vidal-Matutano, P., Henry, A. & Théry-Parisot, I. Dead wood gathering among Neanderthal groups: Charcoal evidence from Abric del Pastor and El Salt (Eastern Iberia). J. Archaeol. Sci. 80, 109–121 (2017).


    Google Scholar
     

  • 54.

    Villaverde, V., Valle, R. M., Roman, D., Iborra, M. P. & Ripoll, M. P. El Gravetiense de la vertiente mediterránea ibérica: Reflexiones a partir de la secuencia de la cova de Les Cendres (Moraira, Alicante). VELEIA 24–25, 445–468 (2007–2008).

  • 55.

    Zilhão, J. et al. Precise dating of the Middle-to-Upper Paleolithic transition in Murcia (Spain) supports late Neandertal persistence in Iberia. Heliyon 3, e00435 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Mallol, C. & Henry, A. Ethnoarchaeology of Paleolithic Fire: Methodological Considerations. Curr. Anthropol. 58, S217–S229 (2017).


    Google Scholar
     

  • 57.

    Goldberg, P. Some micromorphological aspects of prehistoric cave deposits. Cah. d’archéologie du CELAT 161–175 (2001).

  • 58.

    Goldberg, P., Schiegl, S., Meligne, K., Dayton, C. & Conard, N. J. Micromorphology and site formation at Hohle Fels Cave, Swabian Jura Germany. Eiszeit. Gegenw. 53, 1–25 (2003).


    Google Scholar
     

  • 59.

    Karkanas, P. Preservation of anthropogenic materials under different geochemical processes: A mineralogical approach. Quat. Int. 214, 63–69 (2010).


    Google Scholar
     

  • 60.

    Mallol, C. et al. Human actions performed on simple combustion structures: An experimental approach to the study of Middle Palaeolithic fire. Quat. Int. 315, 3–15 (2013).


    Google Scholar
     

  • 61.

    Miller, C. E., Conard, N. J., Goldberg, P. & Berna, F. Dumping, sweeping and trampling: Experimental micromorphological analysis of anthropogenically modified combustion features. Palethnologie 2, 25–37 (2010).


    Google Scholar
     

  • 62.

    Denis, E. H., Pedentchouk, N., Schouten, S., Pagani, M. & Freeman, K. H. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum Earth Planet. Sci. Lett. 467, 149–156. https://doi.org/10.1016/j.epsl.2017.03.021 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 63.

    Bellomo, R. V. A methodological approach for identifying archaeological evidence of fire resulting from human activities. J. Archaeol. Sci. 20, 525–553 (1993).


    Google Scholar
     

  • 64.

    Gowlett, J. A. J., Brink, J. S., Caris, A., Hoare, S. & Rucina, S. M. Evidence of burning from bushfires in Southern and East Africa and its relevance to Hominin evolution. Curr. Anthropol. 58, S206–S216 (2017).


    Google Scholar
     

  • 65.

    David, B. How was this bone burnt? in Problem Solving in Taphonomy: Archaeological and Paleontological studies from Europe, Africa and Oceania (ed. Davidson I, W. D. (eds)) (Tempus, Anthropology Museum, University of Queensland: St Lucia, Queensland, 1990).

  • 66.

    Madella, M., Jones, M. K., Goldberg, P., Goren, Y. & Hovers, E. The exploitation of plant resources by neanderthals in Amud Cave (Israel): The evidence from Phytolith studies. J. Archaeol. Sci. 29, 703–719 (2002).


    Google Scholar
     

  • 67.

    Mallol, C., Cabanes, D. & Baena, J. Microstratigraphy and diagenesis at the upper Pleistocene site of Esquilleu Cave (Cantabria, Spain). Quat. Int. 214, 70–81 (2010).


    Google Scholar
     

  • 68.

    Albert, R. M. et al. Mode of occupation of tabun cave, Mt Carmel, Israel during the Mousterian period: A study of the sediments and phytoliths. J. Archaeol. Sci. 26, 1249–1260 (1999).


    Google Scholar
     

  • 69.

    Sanz, M., Daura, J., Égüez, N. & Cabanes, D. On the track of anthropogenic activity in carnivore dens: Altered combustion structures in Cova del Gegant (NE Iberian Peninsula). Quat. Int. 437, 102–114 (2017).


    Google Scholar
     

  • 70.

    Camarós, E. et al. Large carnivores as taphonomic agents of space modification: An experimental approach with archaeological implications. J. Archaeol. Sci. 40, 1361–1368 (2013).


    Google Scholar
     

  • 71.

    Hoffmann, D. L., Pike, A. W. G., Wainer, K. & Zilhão, J. New U-series results for the speleogenesis and the Palaeolithic archaeology of the Almonda karstic system (Torres Novas, Portugal). Quat. Int. 294, 168–182 (2013).


    Google Scholar
     

  • 72.

    Sanz, M. et al. Taphonomic inferences about Middle Pleistocene hominins: The human cranium of Gruta da Aroeira (Portugal). Am. J. Phys. Anthropol. 167, 615–627 (2018).

    PubMed 

    Google Scholar
     

  • 73.

    Angelucci, D. E. & Zilhão, J. Stratigraphy and formation processes of the Upper Pleistocene deposit at Gruta da Oliveira, Almonda karstic system, Torres Novas Portugal. Geoarchaeology 24, 277–310 (2009).


    Google Scholar
     

  • 74.

    Bennett, J. L. Thermal alteration of buried bone. J. Archaeol. Sci. 26, 1–8 (1999).


    Google Scholar
     

  • 75.

    Shahack-Gross, R. et al. Evidence for the repeated use of a central hearth at Middle Pleistocene (300 ky ago) Qesem Cave, Israel. J. Archaeol. Sci. 44, 12–21 (2014).


    Google Scholar
     

  • 76.

    Barsky, D. & de Lumley, H. Early European Mode 2 and the stone industry from the Caune de l’Arago’s archeostratigraphical levels “P”. Quat. Int. 223–224, 71–86 (2010).


    Google Scholar
     

  • 77.

    Rodríguez-Hidalgo, A., Saladié, P., Ollé, A. & Carbonell, E. Hominin subsistence and site function of TD101 bone bed level at Gran Dolina site (Atapuerca) during the late Acheulean. J. Quat. Sci. 30, 679–701. https://doi.org/10.1002/jqs.2815 (2015).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *