Ecological uncertainty favours the diversification of host use in avian brood parasites


  • 1.

    Levins, R. Evolution in Changing Environments: Some Theoretical Explorations. (Princeton University Press, 1968).

  • 2.

    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).


    Google Scholar
     

  • 3.

    Ducatez, S. Brood parasitism: a good strategy in our changing world? Proc. R. Soc. B: Biol. Sci. 281, 20132404 (2014).


    Google Scholar
     

  • 4.

    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).


    Google Scholar
     

  • 5.

    Futuyma, D. J. & Moreno, G. The evolution of ecological specialisation. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).


    Google Scholar
     

  • 6.

    Abrams, P. A., Grover, J. P. & DeAngelis, E. D. L. The prerequisites for and likelihood of generalist‐specialist coexistence. Am. Naturalist 167, 329–342 (2006).


    Google Scholar
     

  • 7.

    Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Science 312, 1477–1478 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Skelly, D. K. et al. Evolutionary responses to climate change. Conserv. Biol. 21, 1353–1355 (2007).

    PubMed 

    Google Scholar
     

  • 9.

    Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).


    Google Scholar
     

  • 10.

    Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Dunn, R. R., Harris, N. C., Colwell, R. K., Koh, L. P. & Sodhi, N. S. The sixth mass coextinction: are most endangered species parasites and mutualists? Proc. R. Soc. B: Biol. Sci. 276, 3037–3045 (2009).


    Google Scholar
     

  • 12.

    Davies, N. B. Cuckoos, Cowbirds and Other Cheats. (T & A D Poyser, 2000). https://doi.org/10.5040/9781472597472?locatt=label:secondary_bloomsburyCollections.

  • 13.

    Stoddard, M. C. & Hauber, M. E. Colour, vision and coevolution in avian brood parasitism. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160339 (2017).


    Google Scholar
     

  • 14.

    Thorogood, R., Spottiswoode, C. N., Portugal, S. J. & Gloag, R. The coevolutionary biology of brood parasitism: a call for integration. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180190 (2019).


    Google Scholar
     

  • 15.

    Huelsenbeck, J. P., Nielsen, R. & Bollback, J. P. Stochastic mapping of morphological characters. Syst. Biol. 52, 131–158 (2003).

    PubMed 

    Google Scholar
     

  • 16.

    Johnsgard, P. A. The Avian Brood Parasites: Deception at the Nest. (Oxford University Press, 1997).

  • 17.

    Soler, M. Avian Brood Parasitism: Behaviour, Ecology, Evolution and Coevolution. (Springer, Berlin Heidelberg, 2017). https://doi.org/10.1007/978-3-319-73138-4.

  • 18.

    Krüger, O. & Davies, N. B. The evolution of cuckoo parasitism: a comparative analysis. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 269, 375–381 (2002).


    Google Scholar
     

  • 19.

    Hauber, M. E. Interspecific brood parasitism and the evolution of host clutch sizes. Evol. Ecol. Res. 5, 559–570 (2003).


    Google Scholar
     

  • 20.

    Kilner, R. M. The evolution of virulence in brood parasites. Ornithological Sci. 4, 55–64 (2005).


    Google Scholar
     

  • 21.

    Feeney, W. E. et al. Brood parasitism and the evolution of cooperative breeding in birds. Science 342, 1506–1508 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Medina, I., Langmore, N. E., Lanfear, R. & Kokko, H. The evolution of clutch size in hosts of avian brood parasites. Am. Naturalist 190, E112–E123 (2017).


    Google Scholar
     

  • 23.

    Krüger, O., Sorenson, M. D. & Davies, N. B. Does coevolution promote species richness in parasitic cuckoos? Proc. R. Soc. B: Biol. Sci. 276, 3871–3879 (2009).


    Google Scholar
     

  • 24.

    Krüger, O. & Kolss, M. Modelling the evolution of common cuckoo host-races: speciation or genetic swamping? J. Evolut. Biol. 26, 2447–2457 (2013).


    Google Scholar
     

  • 25.

    Medina, I. & Langmore, N. E. The evolution of host specialisation in avian brood parasites. Ecol. Lett. 19, 1110–1118 (2016).

    PubMed 

    Google Scholar
     

  • 26.

    Büchi, L. & Vuilleumier, S. Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am. Naturalist 183, 612–624 (2014).


    Google Scholar
     

  • 27.

    De Mársico, M. C., Mahler, B., Chomnalez, M., Di Giácomo, A. G. & Reboreda, J. C. Host Use by Generalist and Specialist Brood-Parasitic Cowbirds at Population and Individual Levels. In Advances in the Study of Behavior (ed. Macedo, R.) Ch. 3, Vol. 42, 83–121 (Academic Press, 2010), https://doi.org/10.1016/s0065-3454(10)42003-3.

  • 28.

    Hopper, K. R. Risk-spreading and bet-hedging in insect population biology. Annu. Rev. Entomol. 44, 535–560 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Farnsworth, G. L. & Simons, T. R. How many baskets? Clutch sizes that maximize annual fecundity of multiple-brooded birds. Auk 118, 973–982 (2001).


    Google Scholar
     

  • 30.

    Starrfelt, J. & Kokko, H. Bet‐hedging—a triple trade‐off between means, variances and correlations. Biol. Rev. 87, 742–755 (2012).

    PubMed 

    Google Scholar
     

  • 31.

    Rubenstein, D. R. Spatiotemporal environmental variation, risk aversion, and the evolution of cooperative breeding as a bet-hedging strategy. Proc. Natl Acad. Sci. 108, 10816–10822 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Moskát, C., Barta, Z., Hauber, M. E. & Honza, M. High synchrony of egg laying in common cuckoos (Cuculus canorus) and their great reed warbler (Acrocephalus arundinaceus) hosts. Ethol. Ecol. Evolution 18, 159–167 (2006).


    Google Scholar
     

  • 33.

    Brooker, L. C. & Brooker, M. G. Why are cuckoos host specific? Oikos 57, 301–309 (1990).


    Google Scholar
     

  • 34.

    Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. 112, 184–189 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Olofsson, H., Ripa, J. & Jonzén, N. Bet-hedging as an evolutionary game: the trade-off between egg size and number. Proc. R. Soc. B: Biol. Sci. 276, 2963–2969 (2009).


    Google Scholar
     

  • 36.

    Akre, K. L. & Johnsen, S. Psychophysics and the evolution of behavior. Trends Ecol. Evolution 29, 291–300 (2014).


    Google Scholar
     

  • 37.

    Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259–268 (2014).

    PubMed 

    Google Scholar
     

  • 38.

    Poulin, B., Lefebvre, G. & McNeil, R. Tropical avian phenology in relation to abundance and exploitation of food resources. Ecology 73, 2295–2309 (1992).


    Google Scholar
     

  • 39.

    Botero, C. A. & Rubenstein, D. R. Fluctuating environments, sexual selection and the evolution of flexible mate choice in birds. PLoS ONE 7, e32311 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • 41.

    Visser, M. E., Holleman, L. J. M. & Caro, S. P. Temperature has a causal effect on avian timing of reproduction. Proc. R. Soc. B Biol. Sci. 276, 2323–2331 (2009).


    Google Scholar
     

  • 42.

    Nevoux, M., Forcada, J., Barbraud, C., Croxall, J. & Weimerskirch, H. Bet-hedging response to environmental variability, an intraspecific comparison. Ecology 91, 2416–2427 (2010).

    PubMed 

    Google Scholar
     

  • 43.

    Salaberria, C., Celis, P., López‐Rull, I. & Gil, D. Effects of temperature and nest heat exposure on nestling growth, dehydration and survival in a Mediterranean hole-nesting passerine. Ibis 156, 265–275 (2014).


    Google Scholar
     

  • 44.

    Ospina, E. A., Merrill, L. & Benson, T. J. Incubation temperature impacts nestling growth and survival in an open-cup nesting passerine. Ecol. Evolution 8, 3270–3279 (2018).


    Google Scholar
     

  • 45.

    Nagy, J., Hauber, M. E., Hartley, I. R. & Mainwaring, M. C. Correlated evolution of nest and egg characteristics in birds. Anim. Behav. 158, 211–225 (2019).


    Google Scholar
     

  • 46.

    Martin, T. E. et al. Enclosed nests may provide greater thermal than nest predation benefits compared with open nests across latitudes. Funct. Ecol. 31, 1231–1240 (2017).


    Google Scholar
     

  • 47.

    Turtumøygard, T. & Slagsvold, T. Evolution of brood parasitism in birds: constraints related to prey type. Behaviour 147, 299–317 (2010).


    Google Scholar
     

  • 48.

    Douglas, D. J. T., Newson, S. E., Leech, D. I., Noble, D. G. & Robinson, R. A. How important are climate-induced changes in host availability for population processes in an obligate brood parasite, the European cuckoo? Oikos 119, 1834–1840 (2010).


    Google Scholar
     

  • 49.

    Saino Nicola et al. Climate change effects on migration phenology may mismatch brood parasitic cuckoos and their hosts. Biol. Lett. 5, 539–541 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Møller, A. P. et al. Rapid change in host use of the common cuckoo Cuculus canorus linked to climate change. Proc. R. Soc. B: Biol. Sci. 278, 733–738 (2011).


    Google Scholar
     

  • 51.

    Koleček, J., Procházka, P., Brlík, V. & Honza, M. Cross-continental test of natal philopatry and habitat-imprinting hypotheses to explain host specificity in an obligate brood parasite. Sci. Nat. 107, 1–8 (2020).


    Google Scholar
     

  • 52.

    Payne, R. B., Payne, L. L., Woods, J. L. & Sorenson, M. D. Imprinting and the origin of parasite–host species associations in brood-parasitic indigobirds, Vidua chalybeata. Anim. Behav. 59, 69–81 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Price, T., Kirkpatrick, M. & Arnold, S. J. Directional selection and the evolution of breeding date in birds. Science 240, 798–799 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Halupka, L. & Halupka, K. The effect of climate change on the duration of avian breeding seasons: a meta-analysis. Proc. R. Soc. B Biol. Sci. 284, 20171710 (2017).


    Google Scholar
     

  • 55.

    Zink, A. G. & Lyon, B. E. Evolution of conspecific brood parasitism versus cooperative breeding as alternative reproductive tactics. Am. Naturalist 187, 35–47 (2016).


    Google Scholar
     

  • 56.

    Wells, M. T. & Barker, F. K. Big groups attract bad eggs: brood parasitism correlates with but does not cause cooperative breeding. Anim. Behav. 133, 47–56 (2017).


    Google Scholar
     

  • 57.

    Ursino, C. A., De Mársico, M. C., Sued, M., Farall, A. & Reboreda, J. C. Brood parasitism disproportionately increases nest provisioning and helper recruitment in a cooperatively breeding bird. Behav. Ecol. Sociobiol. 65, 2279–2286 (2011).


    Google Scholar
     

  • 58.

    Cockburn, A. Prevalence of different modes of parental care in birds. Proc. R. Soc. B: Biol. Sci. 273, 1375–1383 (2006).


    Google Scholar
     

  • 59.

    Guigueno, M. F. & Sealy, S. G. Nest sanitation in passerine birds: implications for egg rejection in hosts of brood parasites. J. Ornithol. 153, 35–52 (2012).


    Google Scholar
     

  • 60.

    Dunn, P. O. & Winkler, D. W. Changes in timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds. 113–128, (Oxford University Press, 2010) https://doi.org/10.1093/oso/9780198824268.003.0009.

  • 61.

    Hauber, M. E. Site selection and repeatability in Brown-Headed Cowbird (Molothrus ater) parasitism of Eastern Phoebe (Sayornis phoebe) nests. Can. J. Zool. 79, 1518–1523 (2001).


    Google Scholar
     

  • 62.

    Kilner, R. M. How selfish is a cowbird nestling? Anim. Behav. 66, 569–576 (2003).


    Google Scholar
     

  • 63.

    Lowther, P.E. Brood Parasitism—host Lists. (Field Museum of Natural History, Chicago, IL, 2019) https://www.fieldmuseum.org/blog/brood-parasitism-host-lists.

  • 64.

    BirdLife International and Handbook of the Birds of the World. Bird species distribution maps of the world. Version 2018.1. http://datazone.birdlife.org/species/requestdis (2018).

  • 65.

    ORNL DAAC 2018. MODIS and VIIRS Land Products Global Subsetting and Visualization Tool. (ORNL DAAC, Oak Ridge, Tennessee, USA, 2016) https://doi.org/10.3334/ORNLDAAC/1379.

  • 66.

    Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodiversity Informatics 10, https://doi.org/10.17161/bi.v10i0.4955 (2015).

  • 67.

    Colwell, R. K. Predictability, constancy, and contingency of periodic phenomena. Ecology 55, 1148–1153 (1974).


    Google Scholar
     

  • 68.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).


    Google Scholar
     

  • 69.

    Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Millard SP. EnvStats: an R Package for Environmental Statistics. ISBN 978-1-4614-8455-4, (Springer, New York, 2013). http://www.springer.comhttps://doi.org/10.1002/9780470057339.vae043.pub2.

  • 72.

    Revelle, W. psych: procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, Illinois. R package version 2.0.7, https://CRAN.R-project.org/package=psych (2020).

  • 73.

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).


    Google Scholar
     

  • 74.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *