EGFR/Ras-induced CCL20 production modulates the tumour microenvironment


  • 1.

    Pietras, K. & Ostman, A. Hallmarks of cancer: interactions with the tumor stroma. Exp. Cell Res. 316, 1324–1331 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    McCubrey, J. A., Steelman, L. S., Abrams, S. L., Lee, J. T., Chang, F., Bertrand, F. E. et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv. Enzym. Regul. 46, 249–279 (2006).

    CAS 

    Google Scholar
     

  • 4.

    Lazennec, G. & Richmond, A. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol. Med 16, 133–144 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Pivarcsi, A., Muller, A., Hippe, A., Rieker, J., van Lierop, A., Steinhoff, M. et al. Tumor immune escape by the loss of homeostatic chemokine expression. Proc. Natl Acad. Sci. USA 104, 19055–19060 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Cook, D. N., Prosser, D. M., Forster, R., Zhang, J., Kuklin, N. A., Abbondanzo, S. J. et al. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12, 495–503 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Natarajan, A., Wagner, B. & Sibilia, M. The EGF receptor is required for efficient liver regeneration. Proc. Natl Acad. Sci. USA 104, 17081–17086 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Tarutani, M., Itami, S., Okabe, M., Ikawa, M., Tezuka, T., Yoshikawa, K. et al. Tissue-specific knockout of the mouse Pig-a gene reveals important roles for GPI-anchored proteins in skin development. Proc. Natl Acad. Sci. USA 94, 7400–7405 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Sibilia, M., Fleischmann, A., Behrens, A., Stingl, L., Carroll, J., Watt, F. M. et al. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell 102, 211–220 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Homey, B., Wang, W., Soto, H., Buchanan, M. E., Wiesenborn, A., Catron, D. et al. Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC). J. Immunol. 164, 3465–3470 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Tscharntke, M., Pofahl, R., Krieg, T. & Haase, I. Ras-induced spreading and wound closure in human epidermal keratinocytes. FASEB J. 19, 1836–1838 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Boukamp, P., Stanbridge, E. J., Foo, D. Y., Cerutti, P. A. & Fusenig, N. E. c-Ha-ras oncogene expression in immortalized human keratinocytes (HaCaT) alters growth potential in vivo but lacks correlation with malignancy. Cancer Res. 50, 2840–2847 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Zhang, R. D., Price, J. E., Schackert, G., Itoh, K. & Fidler, I. J. Malignant potential of cells isolated from lymph node or brain metastases of melanoma patients and implications for prognosis. Cancer Res. 51, 2029–2035 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Missbach-Guentner, J., Dullin, C., Kimmina, S., Zientkowska, M., Domeyer-Missbach, M., Malz, C. et al. Morphologic changes of mammary carcinomas in mice over time as monitored by flat-panel detector volume computed tomography. Neoplasia 10, 663–673 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Johnston, A., Gudjonsson, J. E., Aphale, A., Guzman, A. M., Stoll, S. W. & Elder, J. T. EGFR and IL-1 signaling synergistically promote keratinocyte antimicrobial defenses in a differentiation-dependent manner. J. Invest Dermatol. 131, 329–337 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Freedberg, I. M., Tomic-Canic, M., Komine, M. & Blumenberg, M. Keratins and the keratinocyte activation cycle. J. Invest Dermatol. 116, 633–640 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Cappuzzo, F., Ciuleanu, T., Stelmakh, L., Cicenas, S., Szczesna, A., Juhasz, E. et al. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol. 11, 521–529 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Moyer, J. D., Barbacci, E. G., Iwata, K. K., Arnold, L., Boman, B., Cunningham, A. et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 57, 4838–4848 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Pollack, V. A., Savage, D. M., Baker, D. A., Tsaparikos, K. E., Sloan, D. E., Moyer, J. D. et al. Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J. Pharm. Exp. Ther. 291, 739–748 (1999).

    CAS 

    Google Scholar
     

  • 21.

    Parmenter, T. J., Kleinschmidt, M., Kinross, K. M., Bond, S. T., Li, J., Kaadige, M. R. et al. Response of BRAF-mutant melanoma to BRAF inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer Disco. 4, 423–433 (2014).

    CAS 

    Google Scholar
     

  • 22.

    Wright, L. N., Ryscavage, A., Merlino, G. & Yuspa, S. H. Modeling the transcriptional consequences of epidermal growth factor receptor ablation in Ras-initiated squamous cancer. Clin. Cancer Res 18, 170–183 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Eskandarpour, M., Huang, F., Reeves, K. A., Clark, E. & Hansson, J. Oncogenic NRAS has multiple effects on the malignant phenotype of human melanoma cells cultured in vitro. International journal of cancer. J. Int. du cancer 124, 16–26 (2009).

    CAS 

    Google Scholar
     

  • 24.

    Jerby-Arnon, L., Shah, P., Cuoco, M. S., Rodman, C., Su, M. J., Melms, J. C. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997e924 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Amberg, N., Sotiropoulou, P. A., Heller, G., Lichtenberger, B. M., Holcmann, M., Camurdanoglu, B. et al. EGFR controls hair shaft differentiation in a p53-independent manner. iScience 15, 243–256 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Soto, H., Wang, W., Strieter, R. M., Copeland, N. G., Gilbert, D. J., Jenkins, N. A. et al. The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3. Proc. Natl Acad. Sci. USA 95, 8205–8210 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Jenh, C. H., Cox, M. A., Kaminski, H., Zhang, M., Byrnes, H., Fine, J. et al. Cutting edge: species specificity of the CC chemokine 6Ckine signaling through the CXC chemokine receptor CXCR3: human 6Ckine is not a ligand for the human or mouse CXCR3 receptors. J. Immunol. 162, 3765–3769 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Sakaguchi, S., Miyara, M., Costantino, C. M. & Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Nagarsheth, N., Wicha, M. S. & Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17, 559–572 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Lorusso, G. & Ruegg, C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol. 130, 1091–1103 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Bissell, M. J., Radisky, D. C., Rizki, A., Weaver, V. M. & Petersen, O. W. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70, 537–546 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Sparmann, A. & Bar-Sagi, D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6, 447–458 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Lichtenberger, B. M., Gerber, P. A., Holcmann, M., Buhren, B. A., Amberg, N., Smolle, V. et al. Epidermal EGFR controls cutaneous host defense and prevents inflammation. Sci. Transl. Med 5, 199ra111 (2013).

    PubMed 

    Google Scholar
     

  • 35.

    Eckert, L. B., Repasky, G. A., Ulku, A. S., McFall, A., Zhou, H., Sartor, C. I. et al. Involvement of Ras activation in human breast cancer cell signaling, invasion, and anoikis. Cancer Res. 64, 4585–4592 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Ding, X., Wang, K., Wang, H., Zhang, G., Liu, Y., Yang, Q. et al. High expression of CCL20 is associated with poor prognosis in patients with hepatocellular carcinoma after curative resection. J. Gastrointest. Surg. 16, 828–836 (2012).

    PubMed 

    Google Scholar
     

  • 37.

    Kirshberg, S., Izhar, U., Amir, G., Demma, J., Vernea, F., Beider, K. et al. Involvement of CCR6/CCL20/IL-17 axis in NSCLC disease progression. PLoS ONE 6, e24856 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Rubie, C., Frick, V. O., Ghadjar, P., Wagner, M., Grimm, H., Vicinus, B. et al. CCL20/CCR6 expression profile in pancreatic cancer. J. Transl. Med 8, 45 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Wang, L., Qin, H., Li, L., Zhang, Y., Tu, Y., Feng, F. et al. Overexpression of CCL20 and its receptor CCR6 predicts poor clinical prognosis in human gliomas. Med. Oncol. 29, 3491–3497 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Campbell, A. S., Albo, D., Kimsey, T. F., White, S. L. & Wang, T. N. Macrophage inflammatory protein-3alpha promotes pancreatic cancer cell invasion. J. Surg. Res 123, 96–101 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Cook, K. W., Letley, D. P., Ingram, R. J., Staples, E., Skjoldmose, H., Atherton, J. C. et al. CCL20/CCR6-mediated migration of regulatory T cells to the Helicobacter pylori-infected human gastric mucosa. Gut 63, 1550–1559 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Shang, B., Liu, Y., Jiang, S. J. & Liu, Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci. Rep. 5, 15179 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Hippe, A., Homey, B. & Mueller-Homey, A. Chemokines. Recent Results Cancer Res. 180, 35–50 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Addison, C. L., Daniel, T. O., Burdick, M. D., Liu, H., Ehlert, J. E., Xue, Y. Y. et al. The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J. Immunol. 165, 5269–5277 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Strieter, R. M., Polverini, P. J., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., Kasper, J. et al. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem. 270, 27348–27357 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Benkheil, M., Van Haele, M., Roskams, T., Laporte, M., Noppen, S., Abbasi, K. et al. CCL20, a direct-acting pro-angiogenic chemokine induced by hepatitis C virus (HCV): Potential role in HCV-related liver cancer. Exp. Cell Res. 372, 168–177 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Furumoto, K., Soares, L., Engleman, E. G. & Merad, M. Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J. Clin. Invest. 113, 774–783 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Zhang, C. Y., Qi, Y., Li, X. N., Yang, Y., Liu, D. L., Zhao, J. et al. The role of CCL20/CCR6 axis in recruiting Treg cells to tumor sites of NSCLC patients. Biomed. Pharmacother. 69, 242–248 (2015).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *