El Niño/Southern Oscillation response to low-latitude volcanic eruptions depends on ocean pre-conditions and eruption timing


  • 1.

    Trenberth, K. E. The definition of El Niño. Bull. Am. Meteorol. Soc. 78, 2771–2777 (1997).


    Google Scholar
     

  • 2.

    McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006).

    CAS 

    Google Scholar
     

  • 3.

    Grove, R. H. Global impact of the 1789-93 El Niño. Nature 393, 318 (1998).

    CAS 

    Google Scholar
     

  • 4.

    Grove, R. H. The great El Niño of 1789–93 and its global consequences: reconstructing an extreme climate event in world environmental history. Medieval Hist. J 10, 75–98 (2006).


    Google Scholar
     

  • 5.

    Chen, Y. et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nat. Clim. Change 7, 906 (2017).

    CAS 

    Google Scholar
     

  • 6.

    Aceituno, P. et al. The 1877–1878 El Niño episode: associated impacts in South America. Clim Change 92, 389–416 (2009).


    Google Scholar
     

  • 7.

    Diaz, H. F. & McCabe, G. J. A possible connection between the 1878 yellow fever epidemic in the southern United States and the 1877–78 El Niño episode. Bull. Am. Meteorol. Soc. 80, 21–28 (1999).


    Google Scholar
     

  • 8.

    Rasmusson, E. M. & Carpenter, T. H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Month. Weather Rev. 110, 354–384 (1982).


    Google Scholar
     

  • 9.

    Karnauskas, K. B. Can we distinguish canonical El Niño from Modoki? Geophys. Res. Lett. 40, 5246–5251 (2013).


    Google Scholar
     

  • 10.

    Capotondi, A. et al. Understanding ENSO diversity. Bull. Ame. Meteorol. Soc. 96, 921–938 (2015).


    Google Scholar
     

  • 11.

    Zheng, F., Fang, X.-H., Yu, J.-Y. & Zhu, J. Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett. 41, 7651–7657 (2014).


    Google Scholar
     

  • 12.

    Fang, X.-H., Zheng, F. & Zhu, J. The cloud-radiative effect when simulating strength asymmetry in two types of e l n iño events using cmip5 models. J. Geophys. Res. 120, 4357–4369 (2015).


    Google Scholar
     

  • 13.

    Ashok, K., Behera, S. K., Rao, S. A., Weng, H. & Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 112, C11 (2007).


    Google Scholar
     

  • 14.

    Kling, H. Climate variability risks for electricity supply. Nat. Energy 2, 916 (2017).


    Google Scholar
     

  • 15.

    Glantz, M. H. Currents of Change: Impacts of El Niño and La Niña on Climate and Society (Cambridge University Press, 2001).

  • 16.

    Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of el niño/southern oscillation activity at millennial timescales during the holocene epoch. Nature 420, 162–165 (2002).

    CAS 

    Google Scholar
     

  • 17.

    Landscheidt, T. Solar forcing of El Niño and La Niña. In: The solar cycle and terrestrial climate (eds. Vázquez, M., Schmieder, B.) vol. 463, pp. 135–140 (European Space Agency, Special Publication, 2000).

  • 18.

    Van Oldenborgh, G. J., Philip, S. & Collins, M. El Niño in a changing climate: a multi-model study. Ocean Sci. 1, 81–95 (2005).


    Google Scholar
     

  • 19.

    Yeh, S.-W. et al. El Niño in a changing climate. Nature 461, 511–514 (2009).

    CAS 

    Google Scholar
     

  • 20.

    Ashok, K. & Yamagata, T. Climate change: the El Niño with a difference. Nature 461, 481 (2009).

    CAS 

    Google Scholar
     

  • 21.

    Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 3, 391–397 (2010).

    CAS 

    Google Scholar
     

  • 22.

    Vecchi, G. A. & Wittenberg, A. T. El Niño and our future climate: where do we stand? Wiley Interdiscip. Rev. 1, 260–270 (2010).


    Google Scholar
     

  • 23.

    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    CAS 

    Google Scholar
     

  • 24.

    Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132 (2015).


    Google Scholar
     

  • 25.

    Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849 (2015).


    Google Scholar
     

  • 26.

    DiNezio, P. N. et al. Climate response of the equatorial Pacific to global warming. J. Clim. 22, 4873–4892 (2009).


    Google Scholar
     

  • 27.

    Fedorov, A. V. & Philander, S. G. Is El Niño changing? Science 288, 1997–2002 (2000).

    CAS 

    Google Scholar
     

  • 28.

    Latif, M. & Keenlyside, N. S. El Niño/Southern Oscillation response to global warming. Proc. Natl Acad. Sci. USA 106, 20578–20583 (2009).

    CAS 

    Google Scholar
     

  • 29.

    Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201 (2018).

    CAS 

    Google Scholar
     

  • 30.

    Robock, A. Volcanic eruptions and climate. Rev. Geophys. 38, 191–219 (2000).

    CAS 

    Google Scholar
     

  • 31.

    Stenchikov, G. In: Climate Change: observed impacts on planet Earth, 1st edn. (ed. Letcher, T. M.) ch. 4, pp. 77–102 (Elsevier, 2009).

  • 32.

    Timmreck, C. Modeling the climatic effects of large explosive volcanic eruptions. Wiley Interdiscip. Rev. 3, 545–564 (2012).


    Google Scholar
     

  • 33.

    Meehl, G. A., Teng, H., Maher, N. & England, M. H. Effects of the mount pinatubo eruption on decadal climate prediction skill of pacific sea surface temperatures. Geophys. Res. Lett. 42, 10–840 (2015).


    Google Scholar
     

  • 34.

    Timmreck, C., Pohlmann, H., Illing, S. & Kadow, C. The impact of stratospheric volcanic aerosol on decadal-scale climate predictions. Geophys. Res. Lett. 43, 834–842 (2016).

    CAS 

    Google Scholar
     

  • 35.

    Robock, A. & Mao, J. Winter warming from large volcanic eruptions. Geophys. Res. Lett. 19, 2405–2408 (1992).


    Google Scholar
     

  • 36.

    Zambri, B., LeGrande, A. N., Robock, A. & Slawinska, J. Northern hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. J. Geophys. Res. 122, 7971–7989 (2017).


    Google Scholar
     

  • 37.

    Stenchikov, G. et al. Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res. 111, D7 (2006).

  • 38.

    Osipov, S. & Stenchikov, G. Regional effects of the mount pinatubo eruption on the middle east and the red sea. J. Geophys. Res. 122, 8894–8912 (2017).


    Google Scholar
     

  • 39.

    Adams, J. B., Mann, M. E. & Ammann, C. M. Proxy evidence for an El Niño-like response to volcanic forcing. Nature 426, 274–278 (2003).


    Google Scholar
     

  • 40.

    Raible, C. C. et al. Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects. Wiley Interdiscip. Rev. 7, 569–589 (2016).


    Google Scholar
     

  • 41.

    Mann, M. E., Cane, M. A., Zebiak, S. E. & Clement, A. Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J. Clim. 18, 447–456 (2005).


    Google Scholar
     

  • 42.

    Emile-Geay, J., Seager, R., Cane, M. A., Cook, E. R. & Haug, G. H. Volcanoes and ENSO over the past millennium. J. Clim. 21, 3134–3148 (2008).


    Google Scholar
     

  • 43.

    McGregor, S., Timmermann, A. & Timm, O. A unified proxy for ENSO and PDO variability since 1650. Clim. Past 6, 1–17 (2010).


    Google Scholar
     

  • 44.

    Ohba, M., Shiogama, H., Yokohata, T. & Watanabe, M. Impact of strong tropical volcanic eruptions on ENSO simulated in a coupled GCM. J. Clim. 26, 5169–5182 (2013).


    Google Scholar
     

  • 45.

    Maher, N., McGregor, S., England, M. H. & Gupta, A. S. Effects of volcanism on tropical variability. Geophys. Res. Lett. 42, 6024–6033 (2015).


    Google Scholar
     

  • 46.

    Pausata, F. S., Chafik, L., Caballero, R. & Battisti, D. S. Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl Acad. Sci. USA 112, 13784–13788 (2015).

    CAS 

    Google Scholar
     

  • 47.

    Pausata, F. S., Karamperidou, C., Caballero, R. & Battisti, D. S. ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere: the role of the initial conditions. Geophys. Res. Lett. 43, 8694–8702 (2016).


    Google Scholar
     

  • 48.

    Stevenson, S., Fasullo, J. T., Otto-Bliesner, B. L., Tomas, R. A. & Gao, C. Role of eruption season in reconciling model and proxy responses to tropical volcanism. Proc. Natl Acad. Sci. USA 114, 1822–1826 (2017).

    CAS 

    Google Scholar
     

  • 49.

    Predybaylo, E., Stenchikov, G. L., Wittenberg, A. T. & Zeng, F. Impacts of a Pinatubo-size volcanic eruption on ENSO. J. Geophys. Res. 122, 925–947 (2017).


    Google Scholar
     

  • 50.

    Khodri, M. et al. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun. 8, 778 (2017).


    Google Scholar
     

  • 51.

    Sun, W. et al. How Northern high-latitude volcanic eruptions in different seasons affect ENSO. J. Clim. 32, 3245–3262 (2019).


    Google Scholar
     

  • 52.

    Wang, T. et al. Modulation of ENSO evolution by strong tropical volcanic eruptions. Clim. Dyn. 51, 2433–2453 (2018).


    Google Scholar
     

  • 53.

    Liu, F. et al. How do tropical, Northern hemispheric, and Southern hemispheric volcanic eruptions affect ENSO under different initial ocean conditions? Geophys. Res. Lett. 45, 13–041 (2018).


    Google Scholar
     

  • 54.

    Miao, J., Wang, T., Wang, H. & Sun, J. Interannual weakening of the tropical pacific walker circulation due to strong tropical volcanism. Adv. Atmos. Sci. 35, 645–658 (2018).


    Google Scholar
     

  • 55.

    Eddebbar, Y. A. et al. El Niño–like physical and biogeochemical ocean response to tropical eruptions. J. Clim. 32, 2627–2649 (2019).


    Google Scholar
     

  • 56.

    Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).


    Google Scholar
     

  • 57.

    Seager, R., Zebiak, S. E. & Cane, M. A. A model of the tropical Pacific sea surface temperature climatology. J. Geophys. Res. 93, 1265–1280 (1988).


    Google Scholar
     

  • 58.

    Pausata, F. S., Zanchettin, D., Karamperidou, C., Caballero, R. & Battisti, D. S. ITCZ shift and extratropical teleconnections drive ENSO response to volcanic eruptions. Sci. Adv. 6, eaaz5006 (2020).


    Google Scholar
     

  • 59.

    Wittenberg, A. T., Rosati, A., Delworth, T. L., Vecchi, G. A. & Zeng, F. ENSO modulation: is it decadally predictable? J. Clim. 27, 2667–2681 (2014).


    Google Scholar
     

  • 60.

    McPhaden, M. J. Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett. 30, 9 (2003).

  • 61.

    Mason, B. G., Pyle, D. M., Dade, W. B. & Jupp, T. Seasonality of volcanic eruptions. J. Geophys. Res. 109, B4 (2004).

  • 62.

    McGregor, S. & Timmermann, A. The effect of explosive tropical volcanism on ENSO. J. Clim. 24, 2178–2191 (2011).


    Google Scholar
     

  • 63.

    Li, J. et al. El Niño modulations over the past seven centuries. Nat. Clim. Change 3, 822–826 (2013).


    Google Scholar
     

  • 64.

    Oman, L., Robock, A., Stenchikov, G., Schmidt, G. A. & Ruedy, R. Climatic response to high-latitude volcanic eruptions. J. Geophys. Res. 110, D13 (2005).

  • 65.

    Kravitz, B. & Robock, A. Climate effects of high-latitude volcanic eruptions: role of the time of year. J. Geophys. Res. 116, D1 (2011).

  • 66.

    Schneider, D. P., Ammann, C. M., Otto-Bliesner, B. L. & Kaufman, D. S. Climate response to large, high-latitude and low-latitude volcanic eruptions in the community climate system model. J. Geophys. Res. 114, D15 (2009).

  • 67.

    Liu, F. et al. Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium. Clim. Dyn. 50, 3799–3812 (2018).


    Google Scholar
     

  • 68.

    Colose, C. M., LeGrande, A. N. & Vuille, M. Hemispherically asymmetric volcanic forcing of tropical hydroclimate during the last millennium. Earth Syst. Dyn. 7, 681–696 (2016).


    Google Scholar
     

  • 69.

    Stevenson, S., Otto-Bliesner, B., Fasullo, J. & Brady, E. “El Niño-like” hydroclimate responses to last millennium volcanic eruptions. J. Clim. 29, 2907–2921 (2016).


    Google Scholar
     

  • 70.

    Delworth, T. L. et al. GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J. Clim. 19, 643–674 (2006).


    Google Scholar
     

  • 71.

    Samelson, R. M. & Tziperman, E. Instability of the chaotic ENSO: the growth-phase predictability barrier. J. Atmos. Sci. 58, 3613–3625 (2001).


    Google Scholar
     

  • 72.

    Duan, J., Wu, P. & Ma, Z. Reconciling the discrepancy of post-volcanic cooling estimated from tree-ring reconstructions and model simulations over the Tibetan Plateau. Atmosphere 10, 738 (2019).


    Google Scholar
     

  • 73.

    Robock, A., Taylor, K. E., Stenchikov, G. L. & Liu, Y. GCM evaluation of a mechanism for El Niño triggering by the El Chichón ash cloud. Geophys. Res. Lett. 22, 2369–2372 (1995).


    Google Scholar
     

  • 74.

    Vecchi, G. A. et al. Tropical cyclone sensitivities to co 2 doubling: roles of atmospheric resolution, synoptic variability and background climate changes. Clim. Dyn. 53, 5999–6033 (2019).


    Google Scholar
     

  • 75.

    Vecchi, G. A. & Soden, B. J. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450, 1066–1070 (2007).

    CAS 

    Google Scholar
     

  • 76.

    Wang, S. & Sobel, A. H. Response of convection to relative sea surface temperature: cloud-resolving simulations in two and three dimensions. J. Geophys. Res. 116, D11 (2011).

  • 77.

    Dee, S. G. et al. No consistent ENSO response to volcanic forcing over the last millennium. Science 367, 1477–1481 (2020).

    CAS 

    Google Scholar
     

  • 78.

    Chung, C. & Nigam, S. Asian summer monsoon-ENSO feedback on the Cane–Zebiak model ENSO. J. Clim. 12, 2787–2807 (1999).


    Google Scholar
     

  • 79.

    Gabriel, C. & Robock, A. Stratospheric geoengineering impacts on El Niño/Southern Oscillation. Atmos. Chem. Phys. 15, 11949–11966 (2015).

    CAS 

    Google Scholar
     

  • 80.

    Chen, C., Cane, M. A., Wittenberg, A. T. & Chen, D. ENSO in the CMIP5 simulations: life cycles, diversity, and responses to climate change. J. Clim. 30, 775–801 (2017).


    Google Scholar
     

  • 81.

    Wittenberg, A. T., Rosati, A., Lau, N.-C. & Ploshay, J. J. GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J. Clim. 19, 698–722 (2006).


    Google Scholar
     

  • 82.

    Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).


    Google Scholar
     

  • 83.

    McGregor, S., Timmermann, A., England, M. H., Elison Timm, O. & Wittenberg, A. T. Inferred changes in El Niño-Southern Oscillation variance over the past six centuries. Clim. Past 9, 2269–2284 (2013).


    Google Scholar
     

  • 84.

    Karamperidou, C., Cane, M. A., Lall, U. & Wittenberg, A. T. Intrinsic modulation of ENSO predictability viewed through a local Lyapunov lens. Clim. Dyn. 42, 253–270 (2014).


    Google Scholar
     

  • 85.

    Atwood, A. R., Battisti, D. S., Wittenberg, A. T., Roberts, W. & Vimont, D. J. Characterizing unforced multi-decadal variability of ENSO: a case study with the GFDL CM2.1 coupled GCM. Clim. Dyn. 49, 2845–2862 (2017).


    Google Scholar
     

  • 86.

    Dogar, M. M., Stenchikov, G., Osipov, S., Wyman, B. & Zhao, M. Sensitivity of the regional climate in the Middle East and North Africa to volcanic perturbations. J. Geophys. Res. 122, 7922–7948 (2017).


    Google Scholar
     

  • 87.

    Stenchikov, G. et al. Volcanic signals in oceans. J. Geophys. Res. 114, D16 (2009).

  • 88.

    Sato, M., Hansen, J. E., McCormick, M. P. & Pollack, J. B. Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res. 98, 22987–22994 (1993).


    Google Scholar
     

  • 89.

    Stenchikov, G. L. et al. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res. 103, 13837–13857 (1998).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *