Elevational is the main factor controlling the soil microbial community structure in alpine tundra of the Changbai Mountain


  • 1.

    Ruan, H., Zou, X., Scatena, F. & Zimmerman, J. Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest. Plant Soil 260, 147–154 (2004).

    CAS 

    Google Scholar
     

  • 2.

    Ibekwe, A. M. et al. Impact of fumigants on soil microbial communities. Appl. Environ. Microbiol. 67, 3245–3257 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Reiss, J., Bridle, J. R., Montoya, J. M. & Woodward, G. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol. 24, 505–514 (2009).

    PubMed 

    Google Scholar
     

  • 4.

    Fuhrman, J. A. & Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Lanzen, A. et al. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci. Rep. 6, 28257. https://doi.org/10.1038/srep28257 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Oh, Y. M. et al. Distinctive bacterial communities in the rhizoplane of four tropical tree species. Microb. Ecol. 64, 1018–1027 (2012).

    PubMed 

    Google Scholar
     

  • 8.

    Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Herre, E. A. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • 10.

    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Wh, V. D. P. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Hackl, E., Pfeffer, M., Donat, C., Bachmann, G. & Zechmeister-Boltenstern, S. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol. Biochem. 37, 661–671 (2005).

    CAS 

    Google Scholar
     

  • 12.

    Park, S. et al. Principal component analysis and discriminant analysis (PCA–DA) for discriminating profiles of terminal restriction fragment length polymorphism (T-RFLP) in soil bacterial communities. Soil Biol. Biochem. 38, 2344–2349 (2006).

    CAS 

    Google Scholar
     

  • 13.

    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Klimeš, L. Alpine plant life. Functional plant ecology of high mountain ecosystems by C. Körner. Folia Geobot. 41, 454–455 (2006).


    Google Scholar
     

  • 15.

    Diaz, H. F., Grosjean, M. & Graumlich, L. Climate variability and change in high elevation regions: Past, present and future. Clim. Change 59, 1–4 (2003).


    Google Scholar
     

  • 16.

    Schinner, F. & Gstraunthaler, G. Adaptation of microbial activities to the environmental conditions in alpine soils. Oecologia 50, 113–116 (1981).

    ADS 
    PubMed 

    Google Scholar
     

  • 17.

    Cui, H.-J. et al. Soil microbial community composition and its driving factors in alpine grasslands along a mountain elevational gradient. J. Mt. Sci. 13, 1013–1023. https://doi.org/10.1007/s11629-015-3614-7 (2016).

    Article 

    Google Scholar
     

  • 18.

    Zhang, B., Liang, C., He, H. & Zhang, X. Variations in soil microbial communities and residues along an altitude gradient on the northern slope of changbai mountain, china. PLoS ONE 8, e66184 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Collins, C. G., Carey, C. J., Aronson, E. L., Kopp, C. W. & Diez, J. M. Direct and indirect effects of native range expansion on soil microbial community structure and function. J. Ecol. 104, 1271–1283 (2016).


    Google Scholar
     

  • 20.

    Margesin, R., Jud, M., Tscherko, D. & Schinner, F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol. Ecol. 67, 208–218 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Fierer, N. & Mcculley, R. L. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Shi, Y. et al. Multi-scale variability analysis reveals the importance of spatial distance in shaping Arctic soil microbial functional communities. Soil Biol. Biochem. 86, 126–134 (2015).

    CAS 

    Google Scholar
     

  • 23.

    Yang, Y. et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland. Isme J. Multidiscipl. J. Microb. Ecol. 8, 430–440 (2013).


    Google Scholar
     

  • 24.

    Ding, J. et al. Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Sci. Rep. 5, 7994 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Liu, J. et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 70, 113–122 (2014).

    CAS 

    Google Scholar
     

  • 26.

    Brockett, B. F. T., Prescott, C. E. & Grayston, S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44, 9–20 (2012).

    CAS 

    Google Scholar
     

  • 27.

    Uroz, S., Tech, J. J., Sawaya, N. A., Frey-Klett, P. & Leveau, J. H. J. Structure and function of bacterial communities in ageing soils: Insights from the Mendocino ecological staircase. Soil Biol. Biochem. 69, 265–274 (2014).

    CAS 

    Google Scholar
     

  • 28.

    Shi, Y. et al. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities. Appl. Environ. Microbiol. 81, 492–501 (2014).

    PubMed 

    Google Scholar
     

  • 29.

    Zeglin, L. H. & Myrold, D. D. Fate of decomposed fungal cell wall material in organic horizons of old-growth douglas-fir forest soils. Soil Sci. Soc. Am. J. 77, 489–500 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Wallander, H., Göransson, H. & Rosengren, U. Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139, 89–97 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • 31.

    Colpaert, J. V., Laere, A. V. & Assche, J. A. V. Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Physiol. 16, 787–793 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Zhang, M. et al. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai mountain, China. Pedosphere 21, 615–620 (2011).

    CAS 

    Google Scholar
     

  • 33.

    Wenduo, X. U., Xingyuan, H. E., Chen, W. & Liu, C. Characteristics and succession rules of vegetation types in Changbai mountain. Chin. J. Ecol. 23, 162–174 (2004).


    Google Scholar
     

  • 34.

    Mao, Y., Yannarell, A. C., Davis, S. C. & Mackie, R. I. Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil. Environ. Microbiol. 15, 928–942 (2012).

    PubMed 

    Google Scholar
     

  • 35.

    Grayston, S. J. et al. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Appl. Soil. Ecol. 25, 63–84 (2004).


    Google Scholar
     

  • 36.

    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Tedersoo, L. et al. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol. Ecol. 21, 4160–4170 (2012).

    PubMed 

    Google Scholar
     

  • 38.

    Davey, M. L., Heegaard, E., Halvorsen, R., Kauserud, H. & Ohlson, M. Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient. Mol. Ecol. 22, 368–383 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Mao, Y., Yannarell, A. C. & Mackie, R. I. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS ONE 6, e24750 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Heijden, M. G. A. V. D., Bardgett, R. D. & Straalen, N. M. V. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    PubMed 

    Google Scholar
     

  • 41.

    Steltzer, H. & Bowman, W. D. Original articles: Differential influence of plant species on soil nitrogen transformations within moist meadow alpine Tundra. Ecosystems 1, 464–474 (1998).

    CAS 

    Google Scholar
     

  • 42.

    Shen, C., Ni, Y., Liang, W., Wang, J. & Chu, H. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front. Microbiol. 6, 538–541 (2014).

    CAS 

    Google Scholar
     

  • 43.

    Zhang, C., Liu, G. B., Xue, S. & Xiao, L. Effect of different vegetation types on the rhizosphere soil microbial community structure in the loess plateau of China. J. Integr. Agric. 12, 2103–2113 (2013).


    Google Scholar
     

  • 44.

    Weand, M. P., Arthur, M. A., Lovett, G. M., Mcculley, R. L. & Weathers, K. C. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biol. Biochem. 42, 2161–2173 (2010).

    CAS 

    Google Scholar
     

  • 45.

    Wu, Z. et al. Terminal restriction fragment length polymorphism analysis of soil bacterial communities under different vegetation types in subtropical area. PLoS ONE https://doi.org/10.1371/journal.pone.0129397 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Singh, D. et al. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. Soil Biol. Biochem. 68, 140–149 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Fallen, M. Linking water and nutrients through the vadose zone: A fungal interface between the soil and plant systems. J. Arid Land 206, 155–163 (2011).


    Google Scholar
     

  • 48.

    Grayston, S. J., Griffith, G. S., Mawdsley, J. L., Campbell, C. D. & Bardgett, R. D. Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 33, 533–551 (2001).

    CAS 

    Google Scholar
     

  • 49.

    Studies, R. Forest floor properties across sharp compositional boundaries separating trembling aspen and jack pine stands in the southern boreal forest. Plant Soil 345, 353–364 (2011).


    Google Scholar
     

  • 50.

    Ruzicka, S., Edgerton, D., Norman, M. & Hill, T. The utility of ergosterol as a bioindicator of fungi in temperate soils. Soil Biol. Biochem. 32, 989–1005 (2000).

    CAS 

    Google Scholar
     

  • 51.

    Weete, J. D., Abril, M. & Blackwell, M. Phylogenetic distribution of fungal sterols. PLoS ONE 5, e10899 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Shen, C. et al. Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai mountain. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01184 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Quideau, S. A., Chadwick, O. A., Benesi, A., Graham, R. C. & Anderson, M. A. A direct link between forest vegetation type and soil organic matter composition. Geoderma 104, 41–60 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Tian, J. et al. Linkages between the soil organic matter fractions and the microbial metabolic functional diversity within a broad-leaved Korean pine forest. Eur. J. Soil Biol. 66, 57–64 (2015).

    CAS 

    Google Scholar
     

  • 55.

    Yuan, Y., Si, G., Jian, W., Luo, T. & Zhang, G. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan plateau. FEMS Microbiol. Ecol. 87, 121–132 (2013).

    PubMed 

    Google Scholar
     

  • 56.

    Fierer, N. et al. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92, 797–804 (2011).

    PubMed 

    Google Scholar
     

  • 57.

    Shen, C., Ni, Y., Liang, W., Wang, J. & Chu, H. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front. Microbiol. 6, 582. https://doi.org/10.3389/fmicb.2015.00582 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Hinsinger, P., Bengough, A. G., Vetterlein, D. & Young, I. M. Rhizosphere: Biophysics, biogeochemistry and ecological relevance. Plant Soil 321, 117–152 (2009).

    CAS 

    Google Scholar
     

  • 59.

    Shen, C. et al. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology 95, 3190–3202 (2014).


    Google Scholar
     

  • 60.

    Jarvis, S. G., Woodward, S. & Taylor, A. F. S. Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol. 206, 1145–1155 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Lanzén, A. et al. Multi-targeted metagenetic analysis of the influence of climate and environmental parameters on soil microbial communities along an elevational gradient. Sci. Rep. 6, 28257 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Shen, C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai mountain. Soil Biol. Biochem. 57, 204–211 (2013).

    CAS 

    Google Scholar
     

  • 63.

    Siles, J. A. & Margesin, R. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: What are the driving factors?. Microb. Ecol. 72, 207–220 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Sagovamareckova, M., Cermak, L., Omelka, M., Kyselkova, M. & Kopecky, J. Bacterial diversity and abundance of a creek valleysites reflected soil pH and season. Open Life Sci. https://doi.org/10.1515/biol-2015-0007 (2015).

    Article 

    Google Scholar
     

  • 65.

    Smith, J. L., Halvorson, J. J. & Bolton, H. Soil properties and microbial activity across a 500m elevation gradient in a semi-arid environment. Soil Biol. Biochem. 34, 1749–1757 (2002).

    CAS 

    Google Scholar
     

  • 66.

    Yergeau, E., Kang, S., He, Z., Zhou, J. & Kowalchuk, G. A. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J. 1, 163–179 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Kai, X. et al. Warming alters expressions of microbial functional genes important to ecosystem functioning. Front. Microbiol. 7, 668 (2016).

    ADS 

    Google Scholar
     

  • 68.

    Jing, C. et al. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest. BMC Microbiol. 15, 397–398 (2015).


    Google Scholar
     

  • 69.

    Griffiths, R. I. et al. The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654 (2011).

    PubMed 

    Google Scholar
     

  • 70.

    Davey, M. L., Nybakken, L., Kauserud, H. & Ohlson, M. Fungal biomass associated with the phyllosphere of bryophytes and vascular plants. Mycol. Res. 113, 1254–1260 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Meier, C. L., Rapp, J., Bowers, R. M., Silman, M. & Fierer, N. Fungal growth on a common wood substrate across a tropical elevation gradient: Temperature sensitivity, community composition, and potential for above-ground decomposition. Soil Biol. Biochem. 42, 1083–1090 (2010).

    CAS 

    Google Scholar
     

  • 72.

    Tu, S., Sun, J., Guo, Z. & Gu, F. On relationship between root exudates and plant nutrition in rhizosphere. Soil Environ. 9, 64–67 (2000).


    Google Scholar
     

  • 73.

    Zhang, C., Liu, G., Xue, S. & Song, Z. Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau, China. Geoderma 161, 115–125 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Zeng, S., Zhiyao, S. U., Chen, B. & Yuanchun, Y. U. A review on the rhizosphere nutrition ecology research. J. Nanjing For. Univ. 27, 79 (2003).


    Google Scholar
     

  • 75.

    Wei, Z., Xiaojuan, Q. I., Jianwei, L., Zhengxiang, Y. U. & Xia, C. Characterization of microbial community structure in rhizosphere soils of cowskin Azalea (Rhododendron aureum Georgi) on northern slope of Changbai mountains, China. Chin. Geogr. Sci. 26, 78–89 (2016).


    Google Scholar
     

  • 76.

    Yang, X. & Wu, G. The strategy for conservation and sustainable utilization of biodiversity in Changbaishan biosphere reserve. J. For. Res. 9, 217–222 (1998).


    Google Scholar
     

  • 77.

    Zong, S. et al. Analysis of the process and impacts of Deyeuxia angustifolia invasion on the Alpine Tundra, Changbai mountain. Acta Ecol. Sin. 34, 87–104 (2014).


    Google Scholar
     

  • 78.

    Batten, K. M., Scow, K. M., Davies, K. F. & Harrison, S. P. Two invasive plants alter soil microbial community composition in serpentine grasslands. Biol. Invas. 8, 217–230 (2006).


    Google Scholar
     

  • 79.

    Mebius, L. J. A rapid method for the determination of organic carbon in soil. Anal. Chim. Acta 22, 120–124 (1960).

    CAS 

    Google Scholar
     

  • 80.

    Industry, D. I. Design in industry. Electr. Power 28, 228–228 (1982).


    Google Scholar
     

  • 81.

    Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31–36 (1962).

    CAS 

    Google Scholar
     

  • 82.

    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).

    CAS 

    Google Scholar
     

  • 83.

    Schinner, F. & Mersi, W. V. Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biol. Biochem. 22, 511–515 (1990).

    CAS 

    Google Scholar
     

  • 84.

    Johnson, J. L. & Temple, K. L. Some variables affecting the measurement of “catalase activity” in Soil1. Soil Sci. Soc. Am. J. 28, 207–209 (1964).

    ADS 
    CAS 

    Google Scholar
     

  • 85.

    Klose, S. & Tabatabai, M. A. Urease activity of microbial biomass in soils as affected by cropping systems. Biol. Fertil. Soils 31, 191–199 (2000).

    CAS 

    Google Scholar
     

  • 86.

    Vaughan, D. & Ord, B. G. An effect of soil organic matter on invertase activity in soil. Soil Biol. Biochem. 12, 449–450 (1980).

    CAS 

    Google Scholar
     

  • 87.

    Djajakirana, G., Joergensen, R. G. & Meyer, B. Ergosterol and microbial biomass relationship in soil. Biol. Fertil. Soils 22, 299–304 (1996).

    CAS 

    Google Scholar
     

  • 88.

    Levy-Booth, D. J., Prescott, C. E. & Grayston, S. J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 75, 11–25 (2014).

    CAS 

    Google Scholar
     

  • 89.

    Yuan, H. et al. Abundance and composition of CO_2 fixating bacteria in relation to long-term fertilization of paddy soils. Acta Ecol. Sin. 32, 183–189 (2012).

    CAS 

    Google Scholar
     

  • 90.

    Chen, J., Yu, Z., Michel, F. C. Jr., Wittum, T. & Morrison, M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl. Environ. Microbiol. 73, 4407–4416. https://doi.org/10.1128/AEM.02799-06 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 92.

    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Maidak, B. L. et al. The ribosomal database project (RDP). Nucleic Acids Res. 24, 82–85 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    CoreTeam, R. R: A language and environment for statistical computing. (2013).

  • 95.

    Oksanen, B. J., Kindt, R., Legendre, P. & O’Hara, B. vegan: Community Ecology Package. R package version 1.8-6 (accessed 10 December 2019); https://CRAN.R-project.org/package=vegan.

  • 96.

    Oksanen, J. et al. vegan: Community ecology package. R package version 1.17-3. J. Stat. Softw. 48, 103–132 (2010).


    Google Scholar
     

  • 97.

    Nd, S. A., Potvin, L. R. & Lilleskov, E. A. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition. Mycorrhiza 25, 649–662 (2015).


    Google Scholar
     

  • 98.

    Arbuckle, J. L. Amos 7.0 User’s Guide. (SPSS, 2006).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *