Emission characteristics of ultrafine particles from bare and Al2O3 coated graphite for high temperature applications


  • 1.

    Lo, I. H., Tzelepi, A., Patterson, E. A. & Yeh, T. K. A study of the relationship between microstructure and oxidation effects in nuclear graphite at very high temperatures. J. Nucl. Mater. 501, 361–370 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Contescu, C. I. et al. Beyond the classical kinetic model for chronic graphite oxidation by moisture in high temperature gas-cooled reactors. Carbon N. Y. 127, 158–169 (2018).

    CAS 

    Google Scholar
     

  • 3.

    Kang, B. R. et al. Characteristics of ZrC barrier coating on SiC-coated carbon/carbon composite developed by thermal spray process. Materials (Basel). 12, 747 (2019).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 4.

    Johns, S. et al. A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite. J. Nucl. Mater. 505, 62–68 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Pageot, J. et al. 14C selective extraction from French graphite nuclear waste by CO2 gasification. Prog. Nucl. Energy 105, 279–286 (2018).

    CAS 

    Google Scholar
     

  • 6.

    Šebková, S., Navrátil, T. & Kopanica, M. Graphite composite electrode in voltammetry. Anal. Lett. 38, 1747–1758 (2005).


    Google Scholar
     

  • 7.

    Wang, Q. et al. Enhanced mechanical properties of Al2O3-C refractories with silicon hybridized expanded graphite. Mater. Sci. Eng. A 709, 160–171 (2018).

    CAS 

    Google Scholar
     

  • 8.

    Dulera, I. V., Sinha, R. K., Rama Rao, A. & Patel, R. J. High temperature reactor technology development in India. Prog. Nucl. Energy 101, 82–99 (2017).

    CAS 

    Google Scholar
     

  • 9.

    Huang, W. H., Tsai, S. C., Chiu, I. C., Chen, C. H. & Kai, J. J. The oxidation effects of nuclear graphite during air-ingress accidents in HTGR. Nucl. Eng. Des. 271, 270–274 (2014).

    CAS 

    Google Scholar
     

  • 10.

    Xu, W., Sun, J., Zheng, Y. & Shi, L. The influence of nuclear graphite oxidation on air ingress accident of HTR-PM. Ann. Nucl. Energy 110, 1242–1248 (2017).

    CAS 

    Google Scholar
     

  • 11.

    Chen, Z. et al. Air ingress analysis of chimney effect in the 200 MWe pebble-bed modular high temperature gas-cooled reactor. Ann. Nucl. Energy 106, 143–153 (2017).

    CAS 

    Google Scholar
     

  • 12.

    Bakand, S., Hayes, A. & Dechsakulthorn, F. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal. Toxicol. 24, 125–135 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Bond, T. C. et al. Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. Atmos. 118, 5380–5552 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Oberdörster, G., Oberdörster, E. & Oberdörster, J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 15.

    Beresford, N. A., Scott, E. M. & Copplestone, D. Field effects studies in the chernobyl exclusion zone: lessons to be learnt. J. Environ. Radioact. https://doi.org/10.1016/j.jenvrad.2019.01.005 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Adamantiades, A. & Kessides, I. Nuclear power for sustainable development: current status and future prospects. Energy Policy 37, 5149–5166 (2009).


    Google Scholar
     

  • 17.

    Kissane, M. P., Zhang, F. & Reeks, M. W. Dust in HTRs: its nature and improving prediction of its resuspension. Nucl. Eng. Des. 251, 301–305 (2012).

    CAS 

    Google Scholar
     

  • 18.

    Joshi, M., Khan, A., Anand, S. & Sapra, B. K. Size evolution of ultrafine particles: differential signatures of normal and episodic events. Environ. Pollut. https://doi.org/10.1016/j.envpol.2015.10.001 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Wei, M. et al. Graphite dust deposition on HTGR steam generation: effects of particles-vortex interactions. Nucl. Eng. Des. 330, 217–224 (2018).

    CAS 

    Google Scholar
     

  • 20.

    Fang, Z. et al. The critical sticking velocity of non- spherical graphite particles: a numerical study and validation. Nucl. Eng. Des. 359, 110453 (2020).

    CAS 

    Google Scholar
     

  • 21.

    Moormann, R. Fission product transport and source terms in HTRs: Experience from AVR pebble bed reactor. Sci. Technol. Nucl. Install. 2008, 1–14 (2008).


    Google Scholar
     

  • 22.

    Chi, S. H. & ChanKim, G. Effects of air flow rate on the oxidation of NBG-18 and NBG-25 nuclear graphite. J. Nucl. Mater. 491, 37–42 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Levy, M. & Wong, P. The Oxidation of Pyrolytic Graphite at Various Temperatures and at Air Velocities. Material s Engineering Division U.S. Army Material Research Agency, Vol. 111 (1965).

  • 24.

    Liu, J., Dong, L., Wang, C., Liang, T. & Lai, W. First principles study of oxidation behavior of irradiated graphite. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 352, 160–166 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    El-Genk, M. S. & Tournier, J. M. P. Development and validation of a model for the chemical kinetics of graphite oxidation. J. Nucl. Mater. 411, 193–207 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Xiaowei, L., Jean-Charles, R. & Suyuan, Y. Effect of temperature on graphite oxidation behavior. Nucl. Eng. Des. 227, 273–280 (2004).


    Google Scholar
     

  • 27.

    Propp, W. A. Graphite Oxidation Thermodynamics/Reactions. Other Inf. PBD 1 Sep 1998 35 (1998).

  • 28.

    Kane, J. J., Contescu, C. I., Smith, R. E., Strydom, G. & Windes, W. E. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution. J. Nucl. Mater. 493, 343–367 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Zhou, X. et al. Oxidation behavior of matrix graphite and its effect on compressive strength. Sci. Technol. Nucl. Install. 2017, 1–6 (2017).

    CAS 

    Google Scholar
     

  • 30.

    Contescu, C. I., Guldan, T., Wang, P. & Burchell, T. D. The effect of microstructure on air oxidation resistance of nuclear graphite. Carbon N. Y. 50, 3354–3366 (2012).

    CAS 

    Google Scholar
     

  • 31.

    ASTM. Standard Test Method for Air Oxidation of Carbon and Graphite in the Kinetic Regime 1. Astm D7542-15 1–12 (2015) https://doi.org/10.1520/D7542-15.1.

  • 32.

    Windes, W., Strydom, G., Smith, R. & Kane, J. Role of Nuclear Grade Graphite in Controlling Oxidation in Modular HTGRs. 84 (2014).

  • 33.

    Masoudifar, S., Bavand-Vandchali, M., Golestani-Fard, F. & Nemati, A. Molten salt synthesis of a SiC coating on graphite flakes for application in refractory castables. Ceram. Int. 42, 11951–11957 (2016).

    CAS 

    Google Scholar
     

  • 34.

    Wang, P. et al. Ablation resistance of ZrB2-SiC/SiC coating prepared by pack cementation for graphite. J. Alloys Compd. 682, 203–207 (2016).

    CAS 

    Google Scholar
     

  • 35.

    Feng, T., Li, H. J., Hu, M. H., Lin, H. J. & Li, L. Oxidation and ablation resistance of Fe2O3 modified ZrB2–SiC–Si coating for carbon/carbon composites. Ceram. Int. 42, 270–278 (2016).

    CAS 

    Google Scholar
     

  • 36.

    Yang, X., Zhao-hui, C. & Feng, C. Journal of Asian Ceramic Societies High-temperature protective coatings for C/SiC composites. Integr. Med. Res. 2, 305–309 (2014).


    Google Scholar
     

  • 37.

    Zhang, S. & Lee, W. E. Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings. J. Eur. Ceram. Soc. 23, 1215–1221 (2003).

    CAS 

    Google Scholar
     

  • 38.

    Li, L. et al. Oxidation behavior and microstructure evolution of SiC–ZrB2–ZrC coating for C/C composites at 1673 K. Ceram. Int. 42, 13041–13046 (2016).

    CAS 

    Google Scholar
     

  • 39.

    Nechepurenko, A. & Samuni, S. Oxidation protection of graphite by BN coatings. J. Solid State Chem. 154, 162–164 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Wang, P. et al. Oxidation protective ZrB2-SiC coatings with ferrocene addition on SiC coated graphite. Ceram. Int. 42, 2654–2661 (2016).

    CAS 

    Google Scholar
     

  • 41.

    Yamamoto, Y. et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors. J. Nucl. Mater. 467, 703–716 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Xu, X., Li, Y., Wang, Q., Sang, S. & Pan, L. Effect of alumina-coated graphite (ACG) on the microstructure and mechanical properties of Al2O3-C refractories. J. Ceram. Sci. Technol. 8, 455–462 (2017).


    Google Scholar
     

  • 43.

    Wang, Q. et al. Strengthening mechanism of graphene oxide nanosheets for Al2O3–C refractories. Ceram. Int. 40, 163–172 (2014).

    CAS 

    Google Scholar
     

  • 44.

    Bahlawane, N. Novel sol–gel process depositing α-Al2O3 for the improvement of graphite oxidation-resistance. Thin Solid Films 396, 126–130 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Yano, T., Ichikawa, K., Akiyoshi, M. & Tachi, Y. Neutron irradiation damage in aluminum oxide and nitride ceramics up to a fluence of 4.2 × 1026 n/m2. J. Nucl. Mater. 1, 20. https://doi.org/10.1016/S0022-3115(00)00092-1 (2000).

    Article 

    Google Scholar
     

  • 46.

    Yadav, S. K., Khan, A. & Shukla, P. Development of a high temperature facility for study of aerosol emission behavior of combustible materials. Measurement 139, 308–316 (2019).


    Google Scholar
     

  • 47.

    Kumar, S. A. et al. Preparation of in-House graphite Reference Material for Boron. https://inis.iaea.org/search/search.aspx?orig_q=RN:47104468 (2016).

  • 48.

    ASTM. Graphite Standard Specification for Isotropic and Near-isotropic Nuclear Graphites. i, 1–5 (2018).

  • 49.

    Alex, M., Balagi, V., Prasad, K. R., Sreekumar, K. P. & Ananthapadmanabhan, P. V. Plasma sprayed alumina coatings for radiation detector development. Pramana J. Phys. 55, 927–932 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Troy, R. S., Tompson, R. V., Ghosh, T. K., Loyalka, S. K. & Gallego, N. C. Generation of graphite particles by sliding abrasion and their characterization. Nucl. Technol. 189, 241–257 (2015).


    Google Scholar
     

  • 51.

    Andris, A., Fischer, F., Herrmann, M., Lippmann, W. & Hurtado, A. Investigations of graphite particle interaction with metallic surfaces. Metals (Basel) 10, 1–18 (2020).


    Google Scholar
     

  • 52.

    Sun, Q., Peng, W., Yu, S. & Wang, K. A review of HTGR graphite dust transport research. Nucl. Eng. Des. 360, 110477 (2020).

    CAS 

    Google Scholar
     

  • 53.

    Yadav, S. K. et al. Physico-chemical characteristics of graphite aerosols generated during postulated air ingress accident. Ann. Nucl. Energy 132, 100–107 (2019).

    CAS 

    Google Scholar
     

  • 54.

    Haynes, B. S. & Wagner, H. G. Soot formation. Prog. Energy Combust. Sci. 7, 229–273 (1981).

    CAS 

    Google Scholar
     

  • 55.

    Flagen, R. C. & Seinfeld, J. H. Fundamental of Air Pollution Engineering. (Prentice -Hall, Inc. Englewood Cliffs, New Jersey) (1988). https://doi.org/10.1016/j.ijcard.2015.09.043.

  • 56.

    Shaw, M. S. & Johnson, J. D. Carbon clustering in detonations. J. Appl. Phys. 62, 2080–2085 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Sreekanth, B. et al. Evolution of particle metrics in a buoyant aerosol cloud from explosive releases. Aerosol Sci. Technol. 6826, 1–15 (2020).


    Google Scholar
     

  • 58.

    Wang, H. & Frenklach, M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combust. Flame https://doi.org/10.1016/S0010-2180(97)00068-0 (1997).

    Article 

    Google Scholar
     

  • 59.

    Khan, A. et al. Generation of high-concentration nanoparticles using glowing wire technique. J. Nanoparticle Res. 16, 20. https://doi.org/10.1007/s11051-014-2776-5 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 60.

    Eremin, A. V., Gurentsov, E. V., Hofmann, M., Kock, B. F. & Schulz, C. TR-LII for sizing of carbon particles forming at room temperature. Appl. Phys. B Lasers Opt. 83, 449–454 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Dean, A. J., Hanson, R. K. & Bowman, C. T. High temperature shock tube study of reactions of CH and C-atoms with N2. Symp. Combust. 23, 259–265 (1991).


    Google Scholar
     

  • 62.

    Sojka, J., Warnatz, J., Vlasov, P. A. & Zaslonko, I. S. Kinetic modeling of carbon suboxide thermal decomposition and formation of soot-like particles behind shock waves. Combust. Sci. Technol. 158, 439–461 (2000).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *