Evidence of torpor in the tusks of Lystrosaurus from the Early Triassic of Antarctica


  • 1.

    Convey, P. et al. Antarctic terrestrial life – challenging the history of the frozen continent? Biol. Rev. 83, 103–117 (2008).

    Article 

    Google Scholar
     

  • 2.

    Taylor, T. N. & Taylor, E. L. Antarctic Paleobiology: Its Role In The Reconstruction Of Gondwana (Springer Verlag, New York, 1990).

  • 3.

    Scotese, C. R., Boucot, A. J. & McKerrow, W. S. Gondwanan palaeogeography and palaeoclimatology. J. Afr. Earth Sci. 28, 99–114 (1999).

    Article 

    Google Scholar
     

  • 4.

    Taylor, E. L., Taylor, T. N. & Cuneo, N. R. The present is not the key to the past: a polar forest from the permian of antarctica. Science 257, 1675–1677 (1992).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Taylor, E. L. & Taylor, T. N. Tree rings and paleoclimate from the Triassic of Antarctica. The Nonmarine Triassic (eds Lucas, S. G. & Morales, M.), New Mexico Museum of Natural History History and Science Bulletin 3: 453–455 (1993).

  • 6.

    Decombeix, A. L., Serbet, R. & Taylor, E. L. Under pressure? Epicormic shoots and traumatic growth zones in high-latitude Triassic trees from East Antarctica. Ann. Bot. 121, 681–689 (2018).

    Article 

    Google Scholar
     

  • 7.

    Geiser, F. & Ruf, T. Hibernation versus daily torpor in mammals and birds: physiological variables and classification of torpor patterns. Physiol. Zool. 68, 935–966 (1995).

    Article 

    Google Scholar
     

  • 8.

    Rinaldi, C. & Cole, T. M. Environmental seasonality and incremental growth rates of beaver (Castor canadensis) incisors: Implications for palaeobiology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 206, 289–301 (2004).

    Article 

    Google Scholar
     

  • 9.

    Goodwin, H. T., Michener, G. R., Gonzalez, D. & Rinaldi, C. E. Hibernation is recorded in lower incisors of recent and fossil ground squirrels (Spermophilus). J. Mammal. 86, 323–332 (2005).

    Article 

    Google Scholar
     

  • 10.

    Batavia, M., Nguyen, G. & Zucker, I. The effects of day length, hibernation, and ambient temperature on incisor dentin in the Turkish hamster (Mesocricetus brandti). J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 183, 557–566 (2013).

    Article 

    Google Scholar
     

  • 11.

    Klevezal, G. A. & Anufriev, A. I. Variations of increments and “hibernation zone” on incisor surface in marmots (Genus Marmota). Biol. Bull. 41, 601–615 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Trunova, Y. E. Hibernation mark in incisors of fossil rodents. Dokl. Biol. Sci. 377, 163–165 (2001).

    Article 

    Google Scholar
     

  • 13.

    Fisher, D. C., Fox, D. L. & Agenbroad, L. D. Tusk growth rate and season of death of Mammuthus columbi from Hot Springs, South Dakota, USA. Adavances in Mammoth Research (Proceedings of the Second International Mammoth Conference, Rotterdam, May 16-20 1999) (eds Reumer, J. W. F., De Vos, J. & Mol, D.) DEINSEA 9: 117–133 (2003).

  • 14.

    Hallam, A. Why was there a delayed radiation after the end-Palaeozoic extinctions? Hist. Biol. 5, 257–262 (1991).

    Article 

    Google Scholar
     

  • 15.

    Kidder, D. L. & Worsley, T. R. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 207–237 (2004).

    Article 

    Google Scholar
     

  • 16.

    Collinson, J. W., Hammer, W. R., Askin, R. A. & Elliot, D. H. Permian-Triassic boundary in the central Transantarctic Mountains, Antarctica. GSA Bull. 118, 747–763 (2006).

    Article 

    Google Scholar
     

  • 17.

    Kitching, J. W., Collinson, J. W., Elliot, D. H. & Colbert, E. H. Lystrosaurus Zone (Triassic) Fauna from Antarctica. Science 175, 524–527 (1972).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Sidor, C. A., Damiani, R. & Hammer, W. R. A new Triassic temnospondyl from Antarctica and a review of Fremouw Formation biostratigraphy. J. Vertebrate Paleontol. 28, 656–663 (2008).

    Article 

    Google Scholar
     

  • 19.

    Peecook, B. R., Smith, R. M. H. & Sidor, C. A. (2019). A novel archosauromorph from Antarctica and an updated review of a high-latitude vertebrate assemblage in the wake of the end-Permian mass extinction. J. Vertebr. Paleontol. https://doi.org/10.1080/02724634.2018.1536664 (2019).

  • 20.

    Thackery, J. F. Growth increments in the teeth of Diictodon (Therapsida). Koedoe 34, 7–11 (1991).


    Google Scholar
     

  • 21.

    Whitney, M. R., Tse, Y. & Sidor, C. A. Histological evidence of trauma in tusks of southern African dicynodonts. Palaeontol. Afr. 53, 75–80 (2019).


    Google Scholar
     

  • 22.

    Klevezal, G. A. & Shchepotkin, D. V. Incisor growth rate in rodents and the record of the entire annual cycle in the incisors of Marmota baibacina centralis. Biol. Bull. 39, 684–691 (2012).

    Article 

    Google Scholar
     

  • 23.

    Schour, I. & Hoffman, M. M. The rate of apposition of enamel and dentine in man and other mammals. J. Dent. Res. 15, 161–175 (1939).

    Article 

    Google Scholar
     

  • 24.

    Tjäderhane, L., Hietala, E.-L., Svanberg, M. & Larmas, M. Morphological analysis of dentine formation in young rat molars during the recovery phase with calcium along or combined with xylitol following a low-calcium dietary regimen. Arch. Oral Biol. 40, 707–711 (1995).

    Article 

    Google Scholar
     

  • 25.

    Ultsch, G. R. Ecology and physiology of hibernation and overwintering among freshwater fishes, turtles and snakes. Biol. Rev. Camb. Philos. Soc. 64, 435–516 (1989).

    Article 

    Google Scholar
     

  • 26.

    Geiser, F. Hibernation. Curr. Biol. 23, 188–193 (2013).

    Article 

    Google Scholar
     

  • 27.

    Botha-Brink, J. & Angielczyk, K. D. Do extraordinarily high growth rates in Permo-Triassic dicynodonts (Therapsida, Anomodontia) explain their success before and after the end-Permian extinction? Zool. J. Linn. Soc. 160, 341–365 (2010).

    Article 

    Google Scholar
     

  • 28.

    Laaß, M. et al. New insights into the respiration and metabolic physiology of Lystrosaurus. Acta Zool. 92, 363–371 (2011).

    Article 

    Google Scholar
     

  • 29.

    Rey, K. et al. Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades. eLife 6, 1–25 (2017).

    Article 

    Google Scholar
     

  • 30.

    Fraure-Brac, M. G. & Cubo, J. Were the synapsids primitively endotherms? A palaeohistological approach using phylogenetic eigenvector maps. Philos. Trans. R. Soc. B 375, 20190138 (2020).

    Article 

    Google Scholar
     

  • 31.

    Erwin, D. H., Bowring, S. A. & Yugan, J. End-Permian mass extinctions: a review. Spec. Pap. Geol. Soc. Am. 356, 363–383 (2002).


    Google Scholar
     

  • 32.

    Fröbisch, J., Angielczyk, K. D. & Sidor, C. A. The Triassic dicynodont Kombuisia (Synapsida, Anomodontia) from Antarctica, a refuge from the terrestrial Permian-Triassic mass extinction. Naturwissenschaften 97, 187–196 (2010).

    Article 

    Google Scholar
     

  • 33.

    Miller, M. F., Sidor C. A. & Isbell J. L. Permian Vertebrates In Antarctica? Probably Not. Gondwana 12: Geological And Biological Heritage Of Gondwana, Abstracts. 257 (Academia National de Ciencias, Cordoba, Argentina, 2005).

  • 34.

    Botha-Brink, J. & Smith, R. M. H. Lystrosaurus species composition across the Permo-Triassic Boundary in the Karoo Basin of South Africa. Lethaia 40, 125–137 (2007).

    Article 

    Google Scholar
     

  • 35.

    Botha-Brink, J., Codron, D., Huttenlocker, A. K., Angielczyk, K. D. & Ruta, M. Breeding young as a survival strategy during Earth’s greatest mass extinction. Sci. Rep. 6, 24053 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Valentine, J. W. Resource supply and species diversity patterns. Lethaia 4, 51–61 (1971).

    Article 

    Google Scholar
     

  • 37.

    Colbert, E. H. The distribution of Lystrosaurus in Pangaea and its implications. Geobios mémoire spécial 6, 375–383 (1982).

    Article 

    Google Scholar
     

  • 38.

    Botha-Brink, J. Burrowing in Lystrosaurus: preadaptation to a postextinction environment? J. Vertebr. Paleontol. 37, e1365080 (2017).

    Article 

    Google Scholar
     

  • 39.

    Miller, M. F., Hasiotis, S. T., Babcock, L. E., Isbell, J. L. & Collinson, J. W. Tetrapod and large burrows of uncertain origin in Triassic high paleolatitude floodplain deposits, Antarctica. PALAIOS 16, 218–232 (2001).

    Article 

    Google Scholar
     

  • 40.

    Sidor, C. A., Miller, M. F. & Isbell, J. L. Tetrapod burrows from the Triassic of Antarctica. J. Vertebr. Paleontol. 28, 277–284 (2008).

    Article 

    Google Scholar
     

  • 41.

    Lamm, E.-T. Bone Histology of Fossil Tetrapods (eds K. Padian & E.-T. Lamm) 55–160 (University of California Press, 2013).

  • 42.

    Torsvik, T. H. et al. Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci. Rev. 114, 325–368 (2012).

    Article 

    Google Scholar
     

  • 43.

    van Hinsbergen, D. J. J. et al. A paleolatitude calculator for paleoclimate studies. PLoS ONE 10, e0126946 (2015).

    Article 

    Google Scholar
     

  • 44.

    Dean, M. C. Comparative observations on the spacing of short-period (von Ebner’s) lines in dentine. Arch. Oral. Biol. 43, 1009–1021 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 45.

    Dean, M. C. Development, Function and Evolution of Teeth (eds M. F. Teaford, M. M. Smith, & M. W. J. Ferguson) 119–132 (Cambridge University Press, 2000).

  • 46.

    Erickson, G. M. Daily deposition of dentine in juvenile Alligator and assessment of tooth replacement rates using incremental line counts. J. Morphol. 228, 189–194 (1996).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *