Facilitative priority effects drive parasite assembly under coinfection


  • 1.

    Dobson, A., Lafferty, K. D., Kuris, A. M., Hechinger, R. F. & Jetz, W. Homage to Linnaeus: how many parasites? How many hosts? Proc. Natl Acad. Sci. USA 105, 11482–11489 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Mideo, N. Parasite adaptations to within-host competition. Trends Parasitol. 25, 261–268 (2009).

    PubMed 

    Google Scholar
     

  • 3.

    Greischar, M. A. et al. Evolutionary consequences of feedbacks between within-host competition and disease control. Evol. Med. Public Health 2020, 30–34 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Wale, N. et al. Resource limitation prevents the emergence of drug resistance by intensifying within-host competition. Proc. Natl Acad. Sci. USA 114, 13774–13779 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Bhattacharya, A., Toro Díaz, V. C., Morran, L. T. & Bashey, F. Evolution of increased virulence is associated with decreased spite in the insect-pathogenic bacterium Xenorhabdus nematophila. Biol. Lett. 15, 20190432 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Susi, H., Barrès, B., Vale, P. F. & Laine, A.-L. Co-infection alters population dynamics of infectious disease. Nat. Commun. 6, 5975 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Read, A. F. & Taylor, L. H. The ecology of genetically diverse infections. Science 292, 1099–1102 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Hawley, D. M. & Altizer, S. M. Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations. Funct. Ecol. 25, 48–60 (2011).


    Google Scholar
     

  • 9.

    Hoverman, J. T., Hoye, B. J. & Johnson, P. T. J. Does timing matter? How priority effects influence the outcome of parasite interactions within hosts. Oecologia 173, 1471–1480 (2013).

    PubMed 

    Google Scholar
     

  • 10.

    Zhan, J. & McDonald, B. A. Experimental measures of pathogen competition and relative fitness. Annu. Rev. Phytopathol. 51, 131–153 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Hellard, E., Fouchet, D., Vavre, F. & Pontier, D. Parasite–parasite interactions in the wild: how to detect them? Trends Parasitol. 31, 640–652 (2015).

    PubMed 

    Google Scholar
     

  • 12.

    Tollenaere, C., Susi, H. & Laine, A. L. Evolutionary and epidemiological implications of multiple infection in plants. Trends Plant Sci. 21, 80–90 (2015).

    PubMed 

    Google Scholar
     

  • 13.

    Budischak, S. A. et al. Competing for blood: the ecology of parasite resource competition in human malaria–helminth co-infections. Ecol. Lett. 21, 536–545 (2018).

    PubMed 

    Google Scholar
     

  • 14.

    Griffiths, E. C., Pedersen, A. B., Fenton, A. & Petchey, O. L. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources. Proc. R. Soc. B 281, 20132286 (2014).

    PubMed 

    Google Scholar
     

  • 15.

    Ezenwa, V. O. Helminth–microparasite co-infection in wildlife: lessons from ruminants, rodents and rabbits. Parasite Immunol. 38, 527–534 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Lello, J., Boag, B., Fenton, A., Stevenson, I. R. & Hudson, P. J. Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840–844 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Chung, E., Petit, E., Antonovics, J., Pedersen, A. B. & Hood, M. E. Variation in resistance to multiple pathogen species: anther smuts of Silene uniflora. Ecol. Evol. 2, 2304–2314 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Halliday, F. W., Umbanhowar, J. & Mitchell, C. E. A host immune hormone modifies parasite species interactions and epidemics: insights from a field manipulation. Proc. R. Soc. B 285, 20182075 (2018).

    PubMed 

    Google Scholar
     

  • 19.

    Eswarappa, S. M., Estrela, S. & Brown, S. P. Within-host dynamics of multi-species infections: facilitation, competition and virulence. PLoS ONE 7, e38730 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Zélé, F., Magalhães, S., Kéfi, S. & Duncan, A. B. Ecology and evolution of facilitation among symbionts. Nat. Commun. 9, 4869 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Jenner, E. An Inquiry into the Causes and Effects of the Variolae Vaccinae, a Disease Discovered in Some of the Western Countries of England, Particularly Gloucestershire, and Known by the Name of “The Cow Pox” (1798) Vol. 84 (R. Lier, 1923).

  • 22.

    Fulton, R. W. Practices and precautions in the use of cross protection for plant virus disease control. Annu. Rev. Phytopathol. 24, 67–81 (1986).


    Google Scholar
     

  • 23.

    Van Loon, L. C. Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 103, 753–765 (1997).


    Google Scholar
     

  • 24.

    Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Pieterse, C. M. J. et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Spoel, S. H., Johnson, J. S. & Dong, X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl Acad. Sci. USA 104, 18842–18847 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Kliebenstein, D. J. & Rowe, H. C. Ecological costs of biotrophic versus necrotrophic pathogen resistance, the hypersensitive response and signal transduction. Plant Sci. 174, 551–556 (2008).

    CAS 

    Google Scholar
     

  • 28.

    Koornneef, A. et al. Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiol. 147, 1358–1368 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205–227 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Ezenwa, V. O., Etienne, R. S., Luikart, G., Beja-Pereira, A. & Jolles, A. E. Hidden consequences of living in a wormy world: nematode‐induced immune suppression facilitates tuberculosis invasion in African buffalo. Am. Nat. 176, 613–624 (2010).

    PubMed 

    Google Scholar
     

  • 31.

    Clay, P. A., Cortez, M. H., Duffy, M. A. & Rudolf, V. H. W. Priority effects within coinfected hosts can drive unexpected population‐scale patterns of parasite prevalence. Oikos 128, 571–583 (2019).


    Google Scholar
     

  • 32.

    Clay, P. A., Duffy, M. A. & Rudolf, V. H. W. Within-host priority effects and epidemic timing determine outbreak severity in co-infected populations. Proc. R. Soc. B 287, 20200046 (2020).

    PubMed 

    Google Scholar
     

  • 33.

    Clark, P., Ward, W., Lang, S., Saghbini, A. & Kristan, D. Order of inoculation during Heligmosomoides bakeri and Hymenolepis microstoma coinfection alters parasite life history and host responses. Pathogens 2, 130–152 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).


    Google Scholar
     

  • 35.

    Vannette, R. L. & Fukami, T. Historical contingency in species interactions: towards niche-based predictions. Ecol. Lett. 17, 115–124 (2014).

    PubMed 

    Google Scholar
     

  • 36.

    Halliday, F. W., Umbanhowar, J. & Mitchell, C. E. Interactions among symbionts operate across scales to influence parasite epidemics. Ecol. Lett. 20, 1285–1294 (2017).

    PubMed 

    Google Scholar
     

  • 37.

    Johnson, P. T. J., de Roode, J. C. & Fenton, A. Why infectious disease research needs community ecology. Science 349, 1259504 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Karvonen, A., Jokela, J. & Laine, A.-L. Importance of sequence and timing in parasite coinfections. Trends Parasitol. 35, 109–118 (2019).

    PubMed 

    Google Scholar
     

  • 39.

    Mordecai, E. A., Gross, K. & Mitchell, C. E. Within-host niche differences and fitness trade-offs promote coexistence of plant viruses. Am. Nat. 187, E13–E26 (2016).

    PubMed 

    Google Scholar
     

  • 40.

    Kuris, A. M., Blaustein, A. R. & Alio, J. J. Hosts as islands. Am. Nat. 116, 570–586 (1980).


    Google Scholar
     

  • 41.

    Rynkiewicz, E. C., Pedersen, A. B. & Fenton, A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol. 31, 212–221 (2015).

    PubMed 

    Google Scholar
     

  • 42.

    Sousa, W. P. Interspecific interactions among larval trematode parasites of freshwater and marine snails. Am. Zool. 32, 583–592 (1992).


    Google Scholar
     

  • 43.

    Graham, A. L. Ecological rules governing helminth microparasite coinfection. Proc. Natl Acad. Sci. USA 105, 566–570 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Seabloom, E. W. et al. The community ecology of pathogens: coinfection, coexistence and community composition. Ecol. Lett. 18, 401–415 (2015).

    PubMed 

    Google Scholar
     

  • 45.

    Cobey, S. & Lipsitch, M. Pathogen diversity and hidden regimes of apparent competition. Am. Nat. 181, 12–24 (2013).

    PubMed 

    Google Scholar
     

  • 46.

    Greischar, M. A. & Koskella, B. A synthesis of experimental work on parasite local adaptation. Ecol. Lett. 10, 418–434 (2007).

    PubMed 

    Google Scholar
     

  • 47.

    Hoeksema, J. D. & Forde, S. E. A meta-analysis of factors affecting local adaptation between interacting species. Am. Nat. 171, 275–290 (2008).

    PubMed 

    Google Scholar
     

  • 48.

    Burdon, J. J. & Laine, A.-L. Evolutionary Dynamics of Plant Pathogen Interactions (Cambridge Univ. Press, 2019).

  • 49.

    Lambrechts, L., Fellous, S. & Koella, J. C. Coevolutionary interactions between host and parasite genotypes. Trends Parasitol. 22, 12–16 (2006).

    PubMed 

    Google Scholar
     

  • 50.

    Ferro, K. et al. Experimental evolution of immunological specificity. Proc. Natl Acad. Sci. USA 116, 20598–20604 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Westman, S. M., Kloth, K. J., Hanson, J., Ohlsson, A. B. & Albrectsen, B. R. Defence priming in Arabidopsis—a meta-analysis. Sci. Rep. 9, 13309 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Pedersen, A. B. & Fenton, A. Emphasizing the ecology in parasite community ecology. Trends Ecol. Evol. 22, 133–139 (2007).

    PubMed 

    Google Scholar
     

  • 53.

    Pedersen, A. B. & Fenton, A. The role of antiparasite treatment experiments in assessing the impact of parasites on wildlife. Trends Parasitol. 31, 200–211 (2015).

    PubMed 

    Google Scholar
     

  • 54.

    Laine, A. L. Context-dependent effects of induced resistance under co-infection in a plant–pathogen interaction. Evol. Appl. 4, 696–707 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Conrath, U., Beckers, G. J. M., Langenbach, C. J. G. & Jaskiewicz, M. R. Priming for enhanced defense. Annu. Rev. Phytopathol. 53, 97–119 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Douma, J. C., Vermeulen, P. J., Poelman, E. H., Dicke, M. & Anten, N. P. R. When does it pay off to prime for defense? A modeling analysis. N. Phytol. 216, 782–797 (2017).

    CAS 

    Google Scholar
     

  • 57.

    Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Budischak, S. A. et al. Resource limitation alters the consequences of co-infection for both hosts and parasites. Int. J. Parasitol. 45, 455–463 (2015).

    PubMed 

    Google Scholar
     

  • 59.

    Borer, E. T., Laine, A.-L. & Seabloom, E. W. A multiscale approach to plant disease using the metacommunity concept. Annu. Rev. Phytopathol. 54, 397–418 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Bushnell, W. R. in The Powdery Mildews: A Comprehensive Treatise (eds Belanger, R. R. et al.) 1–12 (APS, 2002).

  • 61.

    Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).


    Google Scholar
     

  • 62.

    Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. Mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).


    Google Scholar
     

  • 63.

    Benesh, D. P. & Kalbe, M. Experimental parasite community ecology: intraspecific variation in a large tapeworm affects community assembly. J. Anim. Ecol. 85, 1004–1013 (2016).

    PubMed 

    Google Scholar
     

  • 64.

    Mucha, J. et al. Effect of simulated climate warming on the ectomycorrhizal fungal community of boreal and temperate host species growing near their shared ecotonal range limits. Microb. Ecol. 75, 348–363 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Chang, A. L., Brown, C. W., Crooks, J. A. & Ruiz, G. M. Dry and wet periods drive rapid shifts in community assembly in an estuarine ecosystem. Glob. Change Biol. 24, e627–e642 (2018).


    Google Scholar
     

  • 66.

    David, A. S., Seabloom, E. W. & May, G. Disentangling environmental and host sources of fungal endophyte communities in an experimental beachgrass study. Mol. Ecol. 26, 6157–6169 (2017).

    PubMed 

    Google Scholar
     

  • 67.

    Penczykowski, R. M., Parratt, S. R., Barrès, B., Sallinen, S. K. & Laine, A. L. Manipulating host resistance structure reveals impact of pathogen dispersal and environmental heterogeneity on epidemics. Ecology 99, 2853–2863 (2018).

    PubMed 

    Google Scholar
     

  • 68.

    Pieterse, C. M. J. et al. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Susi, H. & Laine, A.-L. The effectiveness and costs of pathogen resistance strategies in a perennial plant. J. Ecol. 103, 303–315 (2015).


    Google Scholar
     

  • 70.

    Höckerstedt, L. Evolutionary and Ecological Dimensions of Disease Resistance. PhD dissertation, Univ. of Helsinki (2020); https://helda.helsinki.fi/handle/10138/314983

  • 71.

    Macke, E. et al. Diet and genotype of an aquatic invertebrate affect the composition of free-living microbial communities. Front. Microbiol. 11, 380 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Wagner, M. R. et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7, 12151 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Biere, A. & Goverse, A. Plant-mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above- and belowground. Annu. Rev. Phytopathol. 54, 499–527 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 75.

    Little, T. J., Watt, K. & Ebert, D. Parasite–host specificity: experimental studies on the basis of parasite adaptation. Evolution 60, 31–38 (2006).

    PubMed 

    Google Scholar
     

  • 76.

    Seybold, H. et al. A fungal pathogen induces systemic susceptibility and systemic shifts in wheat metabolome and microbiome composition. Nat. Commun. 11, 1910 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Cui, J. et al. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc. Natl Acad. Sci. USA 102, 1791–1796 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Mideo, N., Alizon, S. & Day, T. Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol. Evol. 23, 511–517 (2008).

    PubMed 

    Google Scholar
     

  • 79.

    Pedersen, A. B. & Greives, T. J. The interaction of parasites and resources cause crashes in a wild mouse population. J. Anim. Ecol. 77, 370–377 (2008).

    PubMed 

    Google Scholar
     

  • 80.

    Laine, A.-L., Barrès, B., Numminen, E. & Siren, J. P. Variable opportunities for outcrossing result in hotspots of novel genetic variation in a pathogen metapopulation. eLife 8, e47091 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Vaumourin, E. & Laine, A.-L. Role of temperature and coinfection in mediating pathogen life-history traits. Front. Plant Sci. 9, 1670 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Numminen, E., Vaumourin, E., Parratt, S. R., Poulin, L. & Laine, A.-L. Variation and correlations between sexual, asexual and natural enemy resistance life-history traits in a natural plant pathogen population. BMC Evol. Biol. 19, 142 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Tack, A. J. M., Thrall, P. H., Barrett, L. G., Burdon, J. J. & Laine, A.-L. Variation in infectivity and aggressiveness in space and time in wild host–pathogen systems: causes and consequences. J. Evol. Biol. 25, 1918–1936 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Penczykowski, R. M., Laine, A. L. & Koskella, B. Understanding the ecology and evolution of host–parasite interactions across scales. Evol. Appl. 9, 37–52 (2016).

    PubMed 

    Google Scholar
     

  • 85.

    Rynkiewicz, E. C., Fenton, A. & Pedersen, A. B. Linking community assembly and structure across scales in a wild mouse parasite community. Ecol. Evol. 9, 13752–13763 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Siefert, A. Incorporating intraspecific variation in tests of trait-based community assembly. Oecologia 170, 767–775 (2012).

    PubMed 

    Google Scholar
     

  • 88.

    Laughlin, D. C. et al. A predictive model of community assembly that incorporates intraspecific trait variation. Ecol. Lett. 15, 1291–1299 (2012).

    PubMed 

    Google Scholar
     

  • 89.

    Shaw, D. J. & Dobson, A. P. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111, S111–S133 (1995).

    PubMed 

    Google Scholar
     

  • 90.

    Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Sagar, G. R. & Harper, J. L. Plantago major L., P. media L. and P. lanceolata. J. Ecol. 52, 189–221 (1964).


    Google Scholar
     

  • 92.

    Ross, M. D. Inheritance of self-incompatibility in Plantago lanceolata. Heredity (Edinb.) 30, 169–176 (1973).


    Google Scholar
     

  • 93.

    Ojanen, S. P., Nieminen, M., Meyke, E., Pöyry, J. & Hanski, I. Long-term metapopulation study of the Glanville fritillary butterfly (Melitaea cinxia): survey methods, data management, and long-term population trends. Ecol. Evol. 3, 3713–3737 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Tollenaere, C. & Laine, A. L. Investigating the production of sexual resting structures in a plant pathogen reveals unexpected self-fertility and genotype-by-environment effects. J. Evol. Biol. 26, 1716–1726 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Tack, A. & Laine, A. Ecological and evolutionary implications of spatial heterogeneity during the off‐season for a wild plant pathogen. N. Phytol. 65, 297–308 (2014).


    Google Scholar
     

  • 96.

    Laine, A. L. & Hanski, I. Large-scale spatial dynamics of a specialist plant pathogen in a fragmented landscape. J. Ecol. 94, 217–226 (2006).


    Google Scholar
     

  • 97.

    Jousimo, J. et al. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344, 1289–1293 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Laine, A. L. Resistance variation within and among host populations in a plant-pathogen metapopulation: implications for regional pathogen dynamics. J. Ecol. 92, 990–1000 (2004).


    Google Scholar
     

  • 99.

    Penczykowski, R. M., Walker, E., Soubeyrand, S. & Laine, A.-L. Linking winter conditions to regional disease dynamics in a wild plant-pathogen metapopulation. N. Phytol. 205, 1142–1152 (2015).


    Google Scholar
     

  • 100.

    Laine, A. L. Pathogen fitness components and genotypes differ in their sensitivity to nutrient and temperature variation in a wild plant–pathogen association. J. Evol. Biol. 20, 2371–2378 (2007).

    PubMed 

    Google Scholar
     

  • 101.

    Tollenaere, C. et al. SNP design from 454 sequencing of Podosphaera plantaginis transcriptome reveals a genetically diverse pathogen metapopulation with high levels of mixed-genotype infection. PLoS ONE 7, e52492 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Nicot, P. C., Bardin, M. & Dik, A. J. in The Powdery Mildews: A Comprehensive Treatise (eds Belanger, R. R. et al.) 83–99 (APS, 2002).

  • 103.

    Parratt, S. R., Barrès, B., Penczykowski, R. M. & Laine, A.-L. Local adaptation at higher trophic levels: contrasting hyperparasite–pathogen infection dynamics in the field and laboratory. Mol. Ecol. 26, 1964–1979 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    R: A Language and Environment for Statistical Computing v.3.5.2 (R Core Team, 2015); https://doi.org/10.1007/978-3-540-74686-7

  • 105.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).


    Google Scholar
     

  • 106.

    Lenth, R. et al. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.3.3 (2018).

  • 107.

    Hui, F. K. C. boral—Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol. Evol. 7, 744–750 (2016).


    Google Scholar
     

  • 108.

    Bedward, M. ggboral: View BORAL model results with ggplot. R package version 0.1.6 (2019).

  • 109.

    Ploner, M. & Heinze, G. coxphf: Cox regression with Firth’s penalized likelihood. R package version 1.13 (2015).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *