Four meta-analyses across 164 studies on atypical footedness prevalence and its relation to handedness


  • 1.

    Ocklenburg, S., Isparta, S., Peterburs, J. & Papadatou-Pastou, M. Paw preferences in cats and dogs: meta-analysis. Laterality 24, 647–677 (2019).

    PubMed 

    Google Scholar
     

  • 2.

    Ocklenburg, S. & Güntürkün, O. The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries (Academic Press, Berlin, 2017).


    Google Scholar
     

  • 3.

    Vallortigara, G. & Rogers, L. J. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 28, 575–589 (2005) (Discussion 589–633).

    PubMed 

    Google Scholar
     

  • 4.

    Bourne, V. J. Examining the relationship between degree of handedness and degree of cerebral lateralization for processing facial emotion. Neuropsychology 22, 350–356 (2008).

    PubMed 

    Google Scholar
     

  • 5.

    Bryden, M. P., Free, T., Gagné, S. & Groff, P. Handedness effects in the detection of dichotically-presented words and emotions. Cortex 27, 229–235 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Ocklenburg, S., Beste, C., Arning, L., Peterburs, J. & Güntürkün, O. The ontogenesis of language lateralization and its relation to handedness. Neurosci. Biobehav. Rev. 43, 191–198 (2014).

    PubMed 

    Google Scholar
     

  • 7.

    Regaiolli, B., Spiezio, C. & Vallortigara, G. Manual lateralization in macaques: handedness, target laterality and task complexity. Laterality 21, 100–117 (2016).

    PubMed 

    Google Scholar
     

  • 8.

    Somers, M. et al. On the relationship between degree of hand-preference and degree of language lateralization. Brain Lang. 144, 10–15 (2015).

    PubMed 

    Google Scholar
     

  • 9.

    Gabbard, C. & Iteya, M. Foot laterality in children, adolescents, and adults. Laterality 1, 199–205 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Hart, S. & Gabbard, C. Examining the stabilising characteristics of footedness. Laterality 2, 17–26 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Searleman, A. Subject variables and cerebral organization for language. Cortex 16, 239–254 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Packheiser, J. et al. A large-scale estimate on the relationship between language and motor lateralization. Sci. Rep. 2020, 13027 (2020).


    Google Scholar
     

  • 13.

    Day, L. B. & MacNeilage, P. F. Postural asymmetries and language lateralization in humans (Homo sapiens). J. Comp. Psychol. (Washington, DC: 1983) 110, 88–96 (1996).

    CAS 

    Google Scholar
     

  • 14.

    Elias, L. J. & Bryden, M. P. Footedness is a better predictor of language lateralisation than handedness. Laterality 3, 41–51 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Elias, L. J., Bryden, M. P. & Bulman-Fleming, M. B. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia 36, 37–43 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Chapman, J. P., Chapman, L. J. & Allen, J. J. The measurement of foot preference. Neuropsychologia 25, 579–584 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Suar, D., Mandal, M. K., Misra, I. & Suman, S. Patterns of hand preference and unintentional injuries among Indian attempted hand switchers and hand non-switchers. Laterality 18, 652–670 (2013).

    PubMed 

    Google Scholar
     

  • 18.

    Xu, Y. & Zheng, Y. Fraternal birth order, handedness, and sexual orientation in a Chinese population. J. Sex Res. 2017, 10–18 (2017).


    Google Scholar
     

  • 19.

    Zverev, Y. P. & Mipando, M. Cultural and environmental influences on footedness: cross-sectional study in urban and semi-urban Malawi. Brain Cogn. 65, 177–183 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Papadatou-Pastou, M. et al. Human handedness: a meta-analysis. https://doi.org/10.31234/osf.io/5gjac (2020).

  • 21.

    Barut, C., Ozer, C. M., Sevinc, O., Gumus, M. & Yunten, Z. Relationships between hand and foot preferences. Int. J. Neurosci. 117, 177–185 (2007).

    PubMed 

    Google Scholar
     

  • 22.

    Brown, E. R. & Taylor, P. Handedness, footedness, and eyedness. Percept. Mot. Skills 66, 183–186 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Dargent-Paré, C., de Agostini, M., Mesbah, M. & Dellatolas, G. Foot and eye preferences in adults: relationship with handedness. Sex Age. Cortex 28, 343–351 (1992).

    PubMed 

    Google Scholar
     

  • 24.

    Saudino, K. & McManus, I. C. Handedness, footedness, eyedness and earedness in the Colorado Adoption Project. Br. J. Dev. Psychol. 16, 167–174 (1998).


    Google Scholar
     

  • 25.

    Tran, U. S., Stieger, S. & Voracek, M. Evidence for general right-, mixed-, and left-sidedness in self-reported handedness, footedness, eyedness, and earedness, and a primacy of footedness in a large-sample latent variable analysis. Neuropsychologia 62, 220–232 (2014).

    PubMed 

    Google Scholar
     

  • 26.

    Tran, U. S., Stieger, S. & Voracek, M. Mixed-footedness is a more relevant predictor of schizotypy than mixed-handedness. Psychiatry Res. 225, 446–451 (2015).

    PubMed 

    Google Scholar
     

  • 27.

    Coren, S. The lateral preference inventory for measurement of handedness, footedness, eyedness, and earedness: norms for young adults. Bull. Psychon. Soc. 31, 1–3 (1993).

    ADS 

    Google Scholar
     

  • 28.

    Tran, U. S. & Voracek, M. Footedness is associated with self-reported sporting performance and motor abilities in the general population. Front. Psychol. 7, 1199 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Martin, W. L. & Porac, C. Patterns of handedness and footedness in switched and nonswitched Brazilian left-handers: cultural effects on the development of lateral preferences. Dev. Neuropsychol. 31, 159–179 (2007).

    PubMed 

    Google Scholar
     

  • 30.

    Bohannon, J. Reproducibility. Many psychology papers fail replication test. Science (New York, NY) 349, 910–911 (2015).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 31.

    Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. Introduction to Meta-Analysis (Wiley, Berlin, 2011).


    Google Scholar
     

  • 33.

    Sommer, I., Ramsey, N., Kahn, R., Aleman, A. & Bouma, A. Handedness, language lateralisation and anatomical asymmetry in schizophrenia: meta-analysis. Br. J. Psychiatry 178, 344–351 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Markou, P., Ahtam, B. & Papadatou-Pastou, M. Elevated levels of atypical handedness in autism: meta-analyses. Neuropsychol. Rev. 27, 258–283 (2017).

    PubMed 

    Google Scholar
     

  • 35.

    Eglinton, E. & Annett, M. Handedness and dyslexia: a meta-analysis. Percept. Mot. Skills 79, 1611–1616 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Papadatou-Pastou, M. & Tomprou, D.-M. Intelligence and handedness: meta-analyses of studies on intellectually disabled, typically developing, and gifted individuals. Neurosci. Biobehav. Rev. 56, 151–165 (2015).

    PubMed 

    Google Scholar
     

  • 37.

    Denny, K. Handedness and depression: evidence from a large population survey. Laterality 14, 246–255 (2009).

    PubMed 

    Google Scholar
     

  • 38.

    Boscarino, J. A. & Hoffman, S. N. Consistent association between mixed lateral preference and PTSD: confirmation among a national study of 2490 US Army Vietnam veterans. Psychosom. Med. 69, 365–369 (2007).

    PubMed 

    Google Scholar
     

  • 39.

    Dragovic, M. & Hammond, G. Handedness in schizophrenia: a quantitative review of evidence. Acta Psychiatr. Scand. 111, 410–419 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Rushe, T. M., O’Neill, F. A. & Mulholland, C. Language and crossed finger localization in patients with schizophrenia. J. Int. Neuropsychol. Soc. JINS 13, 893–897 (2007).

    PubMed 

    Google Scholar
     

  • 41.

    Schiffman, J. et al. Childhood laterality and adult schizophrenia spectrum disorders: a prospective investigation. Schizophr. Res. 72, 151–160 (2005).

    PubMed 

    Google Scholar
     

  • 42.

    Tran, U. S. & Voracek, M. Footedness is associated with ADHD symptoms in the adult general population. J. Attent. Disord. 22, 261–268 (2018).


    Google Scholar
     

  • 43.

    Annett, M. Laterality and types of dyslexia. Neurosci. Biobehav. Rev. 20, 631–636 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Annett, M. & Kilshaw, D. Lateral preference and skill in dyslexics: implications of the right shift theory. J. Child Psychol. Psychiatry 25, 357–377 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Asenova, I. V. Lateral preferences in autistic children with severe language impairment. Proc. Soc. Behav. Sci. 217, 84–91 (2016).


    Google Scholar
     

  • 46.

    Markoulakis, R., Scharoun, S. M., Bryden, P. J. & Fletcher, P. C. An examination of handedness and footedness in children with high functioning autism and Asperger syndrome. J. Autism Dev. Disord. 42, 2192–2201 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Eastwood, P. Studies in games playing: laterality in a games context. Read. Sports Psychol. 1972, 228–237 (1972).


    Google Scholar
     

  • 48.

    Grouios, G. Motoric dominance and sporting excellence: training versus heredity. Percept. Mot. Skills 98, 53–66 (2004).

    PubMed 

    Google Scholar
     

  • 49.

    Porac, C. (ed.) Lateral Preferences and Human Behavior (Springer, Berlin, 2011).


    Google Scholar
     

  • 50.

    Grouios, G., Kollias, N., Koidou, I. & Poderi, A. Excess of mixed-footedness among professional soccer players. Percept. Mot. Skills 94, 695–699 (2002).

    PubMed 

    Google Scholar
     

  • 51.

    Bryson, A., Frick, B. & Simmons, R. The returns to scarce talent. J. Sports Econ. 14, 606–628 (2013).


    Google Scholar
     

  • 52.

    Annett, M. Left, Right, Hand and Brain: The Right Shift Theory (Lawrence Erlbaum Associates, New York, 1985).


    Google Scholar
     

  • 53.

    Wood, C. J. & Aggleton, J. P. Handedness in ‘fast ball’ sports: do left-handers have an innate advantage? Br. J. Psychol. (London, England: 1953) 80 (Pt 2), 227–240 (1989).

  • 54.

    Carey, D. P. et al. Footedness in world soccer: an analysis of France ’98. J. Sports Sci. 19, 855–864 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Yamaner, F., Karacabey, K., Kavlak, Y. & Sevindi, T. Foot morphology of Turkish football players according to foot preference. Afr. J. Biotechnol. (2011).

  • 56.

    Verbeek, J., Elferink-Gemser, M. T., Jonker, L., Huijgen, B. C. H. & Visscher, C. Laterality related to the successive selection of Dutch national youth soccer players. J. Sports Sci. 35, 2220–2224 (2017).

    PubMed 

    Google Scholar
     

  • 57.

    de Kovel, C. G. F. & Francks, C. The molecular genetics of hand preference revisited. Sc. Rep. 9, 5986 (2019).

    ADS 

    Google Scholar
     

  • 58.

    McManus, I. C. et al. The development of handedness in children. Br. J. Dev. Psychol. 6, 257–273 (1988).


    Google Scholar
     

  • 59.

    Milenkovic, S. & Dragovic, M. Modification of the Edinburgh Handedness Inventory: a replication study. Laterality 18, 340–348 (2013).

    PubMed 

    Google Scholar
     

  • 60.

    Gabbard, C. & Bonfigli, D. Foot laterality in four-year-olds. Percept. Mot. Skills 65, 943–946 (1987).


    Google Scholar
     

  • 61.

    Whittington, J. E. & Richards, P. N. The stability of children’s laterality prevalences and their relationship to measures of performance. Br. J. Educ. Psychol. 57, 45–55 (1987).


    Google Scholar
     

  • 62.

    Dolcos, F., Rice, H. J. & Cabeza, R. Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neurosci. Biobehav. Rev. 26, 819–825 (2002).

    PubMed 

    Google Scholar
     

  • 63.

    Hatta, T. et al. Developmental trajectories of verbal and visuospatial abilities in healthy older adults: comparison of the hemisphere asymmetry reduction in older adults model and the right hemi-ageing model. Laterality 20, 69–81 (2015).

    PubMed 

    Google Scholar
     

  • 64.

    Groden, G. Lateral preferences in normal children. Percept. Mot. Skills 28, 213–214 (1969).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Nachshon, I. & Denno, D. Birth order and lateral preferences. Cortex 22, 567–578 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Dellatolas, G. et al. Age and cohort effects in adult handedness. Neuropsychologia 29, 255–261 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Hugdahl, K., Satz, P., Mitrushina, M. & Miller, E. N. Left-handedness and old age: do left-handers die earlier?. Neuropsychologia 31, 325–333 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    de Kovel, C. G. F., Carrión-Castillo, A. & Francks, C. A large-scale population study of early life factors influencing left-handedness. Sci. Rep. 9, 584 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Papadatou-Pastou, M., Martin, M., Munafò, M. R. & Jones, G. V. Sex differences in left-handedness: a meta-analysis of 144 studies. Psychol. Bull. 134, 677–699 (2008).

    PubMed 

    Google Scholar
     

  • 70.

    Boyd, A. et al. Cohort Profile: the ’children of the 90s’—the index offspring of the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 42, 111–127 (2013).

    PubMed 

    Google Scholar
     

  • 71.

    Fraser, A. et al. Cohort profile: the avon longitudinal study of parents and children: ALSPAC mothers cohort. Int. J. Epidemiol. 42, 97–110 (2013).

    PubMed 

    Google Scholar
     

  • 72.

    Goodman, R., Ford, T., Simmons, H., Gatward, R. & Meltzer, H. Using the strengths and difficulties questionnaire (SDQ) to screen for child psychiatric disorders in a community sample. Br. J. Psychiatry 177, 534–539 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Scerri, T. S. et al. PCSK6 is associated with handedness in individuals with dyslexia. Hum. Mol. Genet. 20, 608–614 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6 (2009).

  • 75.

    Moher, D. et al. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Onkologie 23, 597–602 (2000).

    PubMed 

    Google Scholar
     

  • 76.

    Gabbard, C. Foot laterality during childhood: a review. Int. J. Neurosci. 72, 175–182 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Cohen, J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychol. Bull. 70, 213–220 (1968).

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    McHugh, M. L. Interrater reliability: the kappa statistic. Biochem. Med. 22, 276–282 (2012).


    Google Scholar
     

  • 79.

    Sburlea, A. I. et al. Detecting intention to walk in stroke patients from pre-movement EEG correlates. J. Neuroeng. Rehab. 12, 113 (2015).


    Google Scholar
     

  • 80.

    Sonoda, Y. et al. Comprehensive geriatric assessment of effects of hospitalization and long-term rehabilitation of patients following lower extremity arthroplasty. J. Phys. Therapy Sci. 28, 1178–1187 (2016).


    Google Scholar
     

  • 81.

    Gérard-Desplanches, A. et al. Laterality in persons with intellectual disability II. Hand, foot, ear, and eye laterality in persons with Trisomy 21 and Williams-Beuren syndrome. Dev. Psychobiol. 48, 482–491 (2006).

  • 82.

    Perera, B.J.C. Some facets of laterality in Sri Lankan children. Sri Lanka Journal of Child Health (2009).

  • 83.

    Bacelar, A. M. & Teixeira, L. A. Footedness across ages: distinction between mobilization and stabilization tasks. Laterality 20, 141–153 (2015).

    PubMed 

    Google Scholar
     

  • 84.

    Millot, J. L. & Brand, G. Behavioral lateralization during spontaneous smelling tasks. Percept. Mot. Skills 90, 444–450 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Wang, Z. & Newell, K. M. Footedness exploited as a function of postural task asymmetry. Laterality 18, 303–318 (2013).

    PubMed 

    Google Scholar
     

  • 86.

    Golomer, E. & Mbongo, F. Does footedness or hemispheric visual asymmetry influence centre of pressure displacements?. Neurosci. Lett. 367, 148–151 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Cioncoloni, D. et al. Role of brain hemispheric dominance in anticipatory postural control strategies. Exp. Brain Res. 234, 1997–2005 (2016).

    PubMed 

    Google Scholar
     

  • 88.

    Talis, V. L. & Kazennikov, O. V. Effects of body turn on postural sway during symmetrical and asymmetrical standing. Exp. Brain Res. 237, 2231–2237 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Gilbert, A. N. & Wysocki, C. J. Hand preference and age in the United States. Neuropsychologia 30, 601–608 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    McManus, I. C. Right Hand, Left Hand. The Origins of Asymmetry in Brains, Bodies, Atoms and Cultures 2nd edn. (Weidenfeld & Nicolson, London, 2001).


    Google Scholar
     

  • 91.

    Fisher, Z. & Tipton, E. robumeta: an R-package for robust variance estimation in meta-analysis, 3/7/2015.

  • 92.

    Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. BMJ (Clin. Res. Ed.) 327, 557–560 (2003).


    Google Scholar
     

  • 93.

    Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • 94.

    Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Soft. 36 (2010).

  • 95.

    Yang, N., Waddington, G., Adams, R. & Han, J. Translation, cultural adaption, and test–retest reliability of Chinese versions of the edinburgh handedness inventory and waterloo footedness questionnaire. Laterality 23, 255–273 (2018).

    PubMed 

    Google Scholar
     

  • 96.

    Brysbaert, M. Basic Statistics: For Psychologists (Red Globe Press, London, 2011).


    Google Scholar
     

  • 97.

    Augustyn, C. & Peters, M. On the relation between footedness and handedness. Percept. Mot. Skills 63, 1115–1118 (1986).


    Google Scholar
     

  • 98.

    Ziyagil, M. A. & Dane, S. Distributions of handedness and footedness, and their interrelationships in a large young Turkish population: sex-related differences (2010).

  • 99.

    Martin, M., Papadatou-Pastou, M., Jones, G. V. & Munafò, M. R. Sex and location as determinants of handedness: reply to Vuoksimaa and Kaprio (2010). Psychol. Bull. 136, 348–350 (2010).

    PubMed 

    Google Scholar
     

  • 100.

    Brandler, W. M. et al. Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS Genet. 9, e1003751 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Corballis, M. C. The evolution and genetics of cerebral asymmetry. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 364, 867–879 (2009).

    CAS 

    Google Scholar
     

  • 102.

    Güntürkün, O. & Ocklenburg, S. Ontogenesis of lateralization. Neuron 94, 249–263 (2017).

    PubMed 

    Google Scholar
     

  • 103.

    Schmitz, J., Lor, S., Klose, R., Güntürkün, O. & Ocklenburg, S. The functional genetics of handedness and language lateralization: insights from gene ontology, pathway and disease association analyses. Front. Psychol. 8, 1144 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Wiberg, A. et al. Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and genetics. Brain 142, 2938–2947 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Annett, M. Hand preference and the laterality of cerebral speech. Cortex 11, 305–328 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • 106.

    Armour, J. A. L., Davison, A. & McManus, I. C. Genome-wide association study of handedness excludes simple genetic models. Heredity 112, 221–225 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 6, e1000993 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 108.

    Partida, G. C. et al. Genome-wide association study identifies 48 common genetic variants associated with handedness (2019).

  • 109.

    Schmitz, J., Metz, G. A. S., Güntürkün, O. & Ocklenburg, S. Beyond the genome-towards an epigenetic understanding of handedness ontogenesis. Prog. Neurobiol. 159, 69–89 (2017).

    PubMed 

    Google Scholar
     

  • 110.

    Logue, D. D., Logue, R. T., Kaufmann, W. E. & Belcher, H. M. E. Psychiatric disorders and left-handedness in children living in an urban environment. Laterality 20, 249–256 (2015).

    PubMed 

    Google Scholar
     

  • 111.

    Packheiser, J., Schmitz, J., Berretz, G., Papadatou-Pastou, M. & Ocklenburg, S. Handedness and sex effects on lateral biases in human cradling: three meta-analyses. Neurosci. Biobehav. Rev. 104, 30–42 (2019).

    PubMed 

    Google Scholar
     

  • 112.

    Fleva, E. & Khan, A. An examination of the leftward cradling bias among typically developing adults high on autistic traits. Laterality 20, 711–722 (2015).

    PubMed 

    Google Scholar
     

  • 113.

    Pileggi, L.-A., Malcolm-Smith, S., Hoogenhout, M., Thomas, K. G. & Solms, M. Cradling bias is absent in children with autism spectrum disorders. J. Child Adoles. Menta. Health 25, 55–60 (2013).


    Google Scholar
     

  • 114.

    Pileggi, L.-A., Malcolm-Smith, S. & Solms, M. Investigating the role of social-affective attachment processes in cradling bias: the absence of cradling bias in children with Autism Spectrum Disorders. Laterality 20, 154–170 (2015).

    PubMed 

    Google Scholar
     

  • 115.

    Berretz, G., Wolf, O. T., Güntürkün, O. & Ocklenburg, S. Atypical lateralization in neurodevelopmental and psychiatric disorders: what is the role of stress?. Cortex 125, 215–232 (2020).

    PubMed 

    Google Scholar
     

  • 116.

    Bakan, P., Dibb, G. & Reed, P. Handedness and birth stress. Neuropsychologia 11, 363–366 (1973).

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Satz, P. Pathological left-handedness: an explanaory model. Cortex 8, 121–135 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • 118.

    Satz, P. Left-handedness and early brain insult: an explanation. Neuropsychologia 11, 115–117 (1973).

    CAS 
    PubMed 

    Google Scholar
     

  • 119.

    Stöckel, T. & Carey, D. P. in Laterality in sports, edited by F. Loffing, N. Hagemann, B. Strauss & C. MacMahon (Academic Press is an imprint of Elsevier, 2016), pp. 309–328.

  • 120.

    Hepper, P. G., Wells, D. L. & Lynch, C. Prenatal thumb sucking is related to postnatal handedness. Neuropsychologia 43, 313–315 (2005).

    PubMed 

    Google Scholar
     

  • 121.

    Iteya, M., Gabbard, C. & Hart, S. Limb laterality and motor proficiency in children. Int. J. Neurosci. 83, 275–279 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 122.

    Godfrey, H. K. & Grimshaw, G. M. Emotional language is all right: emotional prosody reduces hemispheric asymmetry for linguistic processing. Laterality 21, 568–584 (2016).

    PubMed 

    Google Scholar
     

  • 123.

    Szaflarski, J. P. et al. A 10-year longitudinal fMRI study of narrative comprehension in children and adolescents. NeuroImage 63, 1188–1195 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Brysbaert, M. Lateral preferences and visual field asymmetries: appearances may have been overstated. Cortex 30, 413–429 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 125.

    Badzakova-Trajkov, G., Häberling, I. S., Roberts, R. P. & Corballis, M. C. Cerebral asymmetries: complementary and independent processes. PLoS ONE 5, e9682 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 126.

    Väyrynen, S., Nevala-Puranen, N. & Kirvesoja, H. Footedness and mounting-short review and two case studies. Int. J. Occu. Saf. Ergonom. JOSE 2, 294–304 (1996).


    Google Scholar
     

  • 127.

    Vieira, A. I. et al. Unisensory and multisensory Self-referential stimulation of the lower limb: an exploratory fMRI study on healthy subjects. Physiother. Theory Pract. 34, 22–40 (2018).

    PubMed 

    Google Scholar
     

  • 128.

    Voracek, M. & Dressler, S. G. Relationships of toe-length ratios to finger-length ratios, foot preference, and wearing of toe rings. Percept. Mot. Skills 110, 33–47 (2010).

    PubMed 

    Google Scholar
     

  • 129.

    van der Elst, W. et al. On the association between lateral preferences and pregnancy/birth stress events in a nonclinical sample of school-aged children. J. Clin. Exp. Neuropsychol. 33, 1–8 (2011).

    PubMed 

    Google Scholar
     

  • 130.

    Teng, E. L., Lee, P.-H., Yang, K.-S. & Chang, P. C. Lateral preferences for hand, foot and eye, and their lack of association with scholastic achievement, in 4143 Chinese. Neuropsychologia 17, 41–48 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • 131.

    Teo, I., Thompson, J., Neo, Y. N., Lundie, S. & Munnoch, D. A. Lower limb dominance and volume in healthy individuals. Lymphology 50, 197–202 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 132.

    Todd, B. K. & Banerjee, R. Lateralization of infant holding by mothers: a longitudinal evaluation of variations over the first 12 weeks. Laterality 21, 12–33 (2016).

    PubMed 

    Google Scholar
     

  • 133.

    Zouhal, H. et al. Laterality influences agility performance in elite soccer players. Front. Physiol. 9, 807 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 134.

    Zult, T. et al. An anterior cruciate ligament injury does not affect the neuromuscular function of the non-injured leg except for dynamic balance and voluntary quadriceps activation. Knee Surg. Sports Traumatol. Arthrosc. 25, 172–183 (2017).

    PubMed 

    Google Scholar
     

  • 135.

    Zverev, Y. P. Cultural and environmental pressure against left-hand preference in urban and semi-urban Malawi. Brain Cogn. 60, 295–303 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 136.

    Ziyagil, M. A. Handedness and footedness: relations to differences in sprinting speed and multiple sprints performance in prepubertal boys. Percept. Mot. Skills 112, 440–450 (2011).

    PubMed 

    Google Scholar
     

  • 137.

    Warren, D. M., Stern, M., Duggirala, R., Dyer, T. D. & Almasy, L. Heritability and linkage analysis of hand, foot, and eye preference in Mexican Americans. Laterality 11, 508–524 (2006).

    PubMed 

    Google Scholar
     

  • 138.

    Williams, C. S., Buss, K. A. & Eskenazi, B. Infant resuscitation is associated with an increased risk of left-handedness. Am. J. Epidemiol. 136, 277–286 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 139.

    Zago, M. et al. Effect of leg dominance on the center-of-mass kinematics during an inside-of-the-foot kick in amateur soccer players. J. Hum. Kinet. 42, 51–61 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 140.

    Schmitz, J. et al. The neurophysiological correlates of handedness: insights from the lateralized readiness potential. Behav. Brain Res. 364, 114–122 (2019).

    PubMed 

    Google Scholar
     

  • 141.

    Schmitz, J., Kumsta, R., Moser, D., Güntürkün, O. & Ocklenburg, S. KIAA0319 promoter DNA methylation predicts dichotic listening performance in forced-attention conditions. Behav. Brain Res. 337, 1–7 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 142.

    Shaki, S. What’s in a kiss? Spatial experience shapes directional bias during kissing. J Nonverbal Behav 37, 43–50 (2013).


    Google Scholar
     

  • 143.

    Schneiders, A. G. et al. A valid and reliable clinical determination of footedness. PM&R 2, 835–841 (2010).


    Google Scholar
     

  • 144.

    Schleuter, S. L. Effects of certain lateral dominance traits, music aptitude, and sex differences with instrumental music achievement. J. Res. Music Educ. 26, 22–31 (1978).


    Google Scholar
     

  • 145.

    Rustagi, S. M., Gopichand, P. V. & Thakyal, S. Study of foot anthropometry in right footed Indian Population. Medico Legal Update, 130 (2013).

  • 146.

    Rovira-Lastra, B., Flores-Orozco, E. I., Ayuso-Montero, R., Peraire, M. & Martinez-Gomis, J. Peripheral, functional and postural asymmetries related to the preferred chewing side in adults with natural dentition. J. Oral Rehabil. 43, 279–285 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 147.

    Sanjaya, K. H., Lee, S., Sriwarno, A. B., Shimomura, Y. & Katsuura, T. The effects of different trunk inclinations on bilateral trunk muscular activities, centre of pressure and force exertions in static pushing postures. J. Hum. Ergol. 43, 9–28 (2014).


    Google Scholar
     

  • 148.

    Sahyoun, C., Floyer-Lea, A., Johansen-Berg, H. & Matthews, P. M. Towards an understanding of gait control: brain activation during the anticipation, preparation and execution of foot movements. NeuroImage 21, 568–575 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 149.

    Shirota, C., Tucker, M. R., Lambercy, O. & Gassert, R. Kinematic effects of inertia and friction added by a robotic knee exoskeleton after prolonged walking. IEEE…International Conference on Rehabilitation Robotics: [proceedings] 2017, 430–434 (2017).

  • 150.

    Tan, L. E. Laterality and directional preferences in preschool children. Percept. Mot. Skills 55, 863–870 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • 151.

    Suar, D., Mandal, M. K., Misra, I. & Suman, S. Lifespan trends of side bias in India. Laterality 12, 302–320 (2007).

    PubMed 

    Google Scholar
     

  • 152.

    Teixeira, L. A., Silva, M. V. M. & Carvalho, M. Reduction of lateral asymmetries in dribbling: the role of bilateral practice. Laterality 8, 53–65 (2003).

    PubMed 

    Google Scholar
     

  • 153.

    Taylor, M. J. D., Strike, S. C. & Dabnichki, P. Turning bias and lateral dominance in a sample of able-bodied and amputee participants. Laterality 12, 50–63 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 154.

    Strike, S. C. & Taylor, M. J. D. The temporal–spatial and ground reaction impulses of turning gait: is turning symmetrical?. Gait Post. 29, 597–602 (2009).


    Google Scholar
     

  • 155.

    Singh, B. Handedness, footedness and familial sinistrality among normal individuals. J. Contemp. Psychol. Res. 32, 1 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 156.

    Shugaba, A. I. et al. Handedness and footedness in footballers in jos, Nigeria. Bayero J. Pure App. Sci. 6, 82 (2014).


    Google Scholar
     

  • 157.

    Stöggl, T., Hébert-Losier, K. & Holmberg, H.-C. Do anthropometrics, biomechanics, and laterality explain V1 side preference in skiers?. Med. Sci. Sports Exerc. 45, 1569–1576 (2013).

    PubMed 

    Google Scholar
     

  • 158.

    Singh, M., Manjary, M. & Dellatolas, G. Lateral preferences among Indian school children. Cortex 37, 231–241 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 159.

    Polemikos, N. & Papaeliou, C. Sidedness preference as an index of organization of laterality. Percept. Mot. Skills 91, 1083–1090 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 160.

    Porac, C., Coren, S. & Duncan, P. Lateral preference in retardates: relationships between hand, eye, foot, and ear preference. J. Clin. Neuropsychol. 2, 173–188 (1980).


    Google Scholar
     

  • 161.

    Pietsch, S. & Jansen, P. Laterality-specific training improves mental rotation performance in young soccer players. Front. Psychol. 9, 220 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 162.

    Paquet, N., Taillon-Hobson, A. & Lajoie, Y. Fukuda and Babinski-Weil tests: within-subject variability and test-retest reliability in nondisabled adults. J. Rehabil. Res. Dev. 51, 1013–1022 (2014).

    PubMed 

    Google Scholar
     

  • 163.

    Peters, M. & Durding, B. M. Footedness of left- and right-handers. Am. J. Psychol. 92, 133 (1979).


    Google Scholar
     

  • 164.

    Reiss, M., Tymnik, G., Kögler, P., Kögler, W. & Reiss, G. Laterality of hand, foot, eye, and ear in twins. Laterality 4, 287–297 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 165.

    Roelofsen, E. G. J. et al. Haptic feedback helps bipedal coordination. Exp. Brain Res. 234, 2869–2881 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 166.

    Reiss, M. & Reiss, G. Lateral preferences in a German population. Percept. Mot. Skills 85, 569–574 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 167.

    Previc, F. H. & Saucedo, J. C. The relationship between turning behavior and motoric dominance in humans. Percept. Mot. Skills 75, 935–944 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 168.

    Priego Quesada, J. I., Bini, R. R., Diefenthaeler, F. & Carpes, F. P. Spectral properties of muscle activation during incremental cycling test. J. Sci. Cycl. 2015, 7–13 (2015).


    Google Scholar
     

  • 169.

    Nicholls, M. E. R., Orr, C. A. & Lindell, A. K. Magical ideation and its relation to lateral preference. Laterality 10, 503–515 (2005).

    PubMed 

    Google Scholar
     

  • 170.

    Neuper, C. & Pfurtscheller, G. Post-movement synchronization of beta rhythms in the EEG over the cortical foot area in man. Neurosci. Lett. 216, 17–20 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 171.

    Noble, J. W., Eng, J. J. & Boyd, L. A. Bilateral motor tasks involve more brain regions and higher neural activation than unilateral tasks: an fMRI study. Exp. Brain Res. 232, 2785–2795 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 172.

    Nissan, J., Gross, M. D., Shifman, A., Tzadok, L. & Assif, D. Chewing side preference as a type of hemispheric laterality. J. Oral Rehabil. 31, 412–416 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 173.

    Moore, B. B., O’Dwyer, N. J., Adams, R. D. & Cobley, S. “Snap-kicking” in elite Australian football: how foot preference and task difficulty highlight potential benefits from bilateral skill training. Int. J. Perform. Anal. Sport 17, 109–120 (2017).


    Google Scholar
     

  • 174.

    Mildren, R. Input from fast adapting skin receptors in the foot interacts with proprioception at the ankle joint (Doctoral dissertation) (2015).

  • 175.

    Nagasawa, Y., Demura, S., Matsuda, S., Uchida, Y. & Demura, T. Effect of differences in kicking legs, kick directions, and kick skill on kicking accuracy in soccer players. J. Quanti. Anal. Sports 7, 1 (2011).


    Google Scholar
     

  • 176.

    Nachshon, I., Denno, D. & Aurand, S. Lateral preferences of hand, eye and foot: relation to cerebral dominance. Int. J. Neurosci. 18, 1–9 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • 177.

    Ooki, S. Nongenetic factors associated with human handedness and footedness in Japanese twin children. Environ. Health Prev. Med. 11, 304–312 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 178.

    Ooki, S. Genetic and environmental influences on the handedness and footedness in Japanese twin children. Twin. Res. Hum. Genet. 8, 649–656 (2005).

    PubMed 

    Google Scholar
     

  • 179.

    Packheiser, J. et al. Using mobile EEG to investigate alpha and beta asymmetries during hand and foot use. Front. Neurosci. 14, 183 (2020).


    Google Scholar
     

  • 180.

    Packheiser, J. et al. Embracing your emotions: affective state impacts lateralisation of human embraces. Psychol. Res. 83, 26–36 (2019).

    PubMed 

    Google Scholar
     

  • 181.

    Ocklenburg, S. et al. Left-right axis differentiation and functional lateralization: a haplotype in the methyltransferase encoding gene SETDB2 might mediate handedness in healthy adults. Mol. Neurobiol. 53, 6355–6361 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 182.

    Ocklenburg, S. et al. FOXP2 variation modulates functional hemispheric asymmetries for speech perception. Brain Lang. 126, 279–284 (2013).

    PubMed 

    Google Scholar
     

  • 183.

    Ocklenburg, S. et al. Effects of emotional valence on hemispheric asymmetries in response inhibition. Symmetry 9, 145 (2017).

    MathSciNet 

    Google Scholar
     

  • 184.

    Ocklenburg, S. & Güntürkün, O. Head-turning asymmetries during kissing and their association with lateral preference. Laterality 14, 79–85 (2009).

    PubMed 

    Google Scholar
     

  • 185.

    Mori, S., Iteya, M. & Kimura, M. Foot preference and hand-foot coordination in preschool children. Bull. Tokyo Gakugei Univ. 2004, 151–154 (2004).


    Google Scholar
     

  • 186.

    Martin, W. L., Machado, A. H. & Paixão, C. B. Footedness across the age span among Brazilian right- and left-handers. Percept. Mot. Skills 99, 999–1006 (2004).

    PubMed 

    Google Scholar
     

  • 187.

    Mandal, M. K., Pandey, G., Singh, S. K. & Asthana, H. S. Degree of asymmetry in lateral preferences: eye, foot, ear. J. Psychol. 126, 155–162 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 188.

    MacDowall, I., Sanzo, P. & Zerpa, C. The effect of kinesio taping on vertical jump height and muscle electromyographic activity of the gastrocnemius and soleus in varsity athletes. Pain, 40 (2015).

  • 189.

    Longoni, A. M. & Orsini, L. Lateral preferences in preschool children: a research note. J. Child Psychol. Psychiatry 29, 533–539 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 190.

    Maredia, S., Sawant, S. & Kumar, S. Influence of leg dominancy over foot pressure and postural sway in middle age population: an observational study. Int. J. Res. Med. Sci. 2015, 1358–1362 (2015).


    Google Scholar
     

  • 191.

    Manser-Smith, K., Tamè, L. & Longo, M. R. A common representation of fingers and toes. Acta Physiol. (Oxf) 199, 102900 (2019).


    Google Scholar
     

  • 192.

    Manser-Smith, K., Tamè, L. & Longo, M. R. Tactile confusions of the fingers and toes. J. Exp. Psychol. Hum. Percept. Perform. 44, 1727–1738 (2018).

    PubMed 

    Google Scholar
     

  • 193.

    Kiyota, T. & Fujiwara, K. Dominant side in single-leg stance stability during floor oscillations at various frequencies. J. Physiol. Anthropol. 33, 25 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 194.

    King, A. C. & Wang, Z. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking. Hum. Mov. Sci. 54, 182–190 (2017).

    PubMed 

    Google Scholar
     

  • 195.

    Lakhani, B., Mansfield, A., Inness, E. L. & McIlroy, W. E. Characterizing the determinants of limb preference for compensatory stepping in healthy young adults. Gait Post. 33, 200–204 (2011).


    Google Scholar
     

  • 196.

    Komai, T. & Fukuoka, G. A study on the frequency of left-handedness and left-footedness among Japanese school children. Human biology, 33 (1934).

  • 197.

    Lenoir, M., van Overschelde, S., de Rycke, M. & Musch, E. Intrinsic and extrinsic factors of turning preferences in humans. Neurosci. Lett. 393, 179–183 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 198.

    Kal, E. C., van der Kamp, J. & Houdijk, H. External attentional focus enhances movement automatization: a comprehensive test of the constrained action hypothesis. Hum. Mov. Sci. 32, 527–539 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 199.

    Ittyerah, M. Hand and foot preference in two cultures. Laterality 24, 631–646 (2019).

    PubMed 

    Google Scholar
     

  • 200.

    Iteya, M., Gabbard, C. & Okada, M. Lower-limb speed and foot preference in children. Percept. Mot. Skills 81, 1115–1118 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 201.

    Iteya, M. & Gabbard, C. Laterality patterns and visual-motor coordination of children. Percept. Mot. Skills 83, 31–34 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 202.

    Ilnicka, L., Trzaskoma, Z., Wiszomirska, I., Wit, A. & Wychowański, M. Lower limb laterality versus foot structure in men and women. Biomed. Hum. Kinet. 5, 28–42 (2013).


    Google Scholar
     

  • 203.

    Ida, Y., Dutta, T. & Mandal, M. K. Side bias and accidents in Japan and India. Int. J. Neurosci. 111, 89–98 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 204.

    Horine, L. E. An investigation of the relationship of laterality groups to performance on selected motor ability tests. Rese. Qu. Am. Assoc. Health Phys. Educ. Recreat. 39, 90–95 (1968).

    CAS 

    Google Scholar
     

  • 205.

    Hoogkamer, W., Potocanac, Z. & Duysens, J. Quick foot placement adjustments during gait: direction matters. Exp. Brain Res. 233, 3349–3357 (2015).

    PubMed 

    Google Scholar
     

  • 206.

    Hodges, N. J., Hayes, S. J., Eaves, D., Horn, R., Williams, A. M. & Gym, W. M. End-point trajectory matching as a method for teaching sport skills.

  • 207.

    Hinton, D. C. & Vallis, L. A. Children age 7 complete complex gait and postural tasks differently than adults under dual-task conditions. J. Mot. Behav. 48, 193–204 (2016).

    PubMed 

    Google Scholar
     

  • 208.

    Hatta, T., Ito, Y., Matsuyama, Y. & Hasegawa, Y. Lower-limb asymmetries in early and late middle age. Laterality 10, 267–277 (2005).

    PubMed 

    Google Scholar
     

  • 209.

    Hatin, B. & Sykes Tottenham, L. What’s in a line? Verbal, facial, and emotional influences on the line bisection task. Laterality 21, 689–708 (2016).

    PubMed 

    Google Scholar
     

  • 210.

    Harms, V. L. & Elias, L. J. Examination of complementarity in speech and emotional vocalization perception. PSYCH 05, 864–874 (2014).


    Google Scholar
     

  • 211.

    Harms, V. L., Cochran, C. & Elias, L. J. Melody and language: an examination of the relationship between complementary processes. Open Psychol. J. 2014, 1–8 (2014).

    ADS 

    Google Scholar
     

  • 212.

    Grouios, G., Hatzitaki, V., Kollias, N. & Koidou, I. Investigating the stabilising and mobilising features of footedness. Laterality 14, 362–380 (2009).

    PubMed 

    Google Scholar
     

  • 213.

    Grouios, G., Kollias, N., Tsorbatzoudis, H. & Alexandris, K. Over-representation of mixed-footedness among professional and semi-professional soccer players: an innate superiority or a strategic advantage?. J. Hum. Mov. Stud. 2002, 19–30 (2002).


    Google Scholar
     

  • 214.

    Good, C. D. et al. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage 14, 685–700 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 215.

    Golomer, E., Rosey, F., Dizac, H., Mertz, C. & Fagard, J. The influence of classical dance training on preferred supporting leg and whole body turning bias. Laterality 14, 165–177 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 216.

    Golomer, E. & Féry, Y. A. Unilateral jump behavior in young professional female ballet dancers. Int. J. Neurosci. 110, 1–7 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 217.

    Gentry, V. & Gabbard, C. Foot-preference behavior: a developmental perspective. J. Gen. Psychol. 122, 37–45 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 218.

    Gabbard, C., Dean, M. & Haensly, P. Foot preference behavior during early childhood, 131–137 (1991).

  • 219.

    Gabbard, C. Associations between hand and foot preference in 3- to 5-year-olds. Cortex 28, 497–502 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 220.

    Feehan, M. et al. Is there an association between lateral preference and delinquent behavior?. J. Abnorm. Psychol. 99, 198–201 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 221.

    Faurie, C., Vianey-Liaud, N. & Raymond, M. Do left-handed children have advantages regarding school performance and leadership skills?. Laterality 11, 57–70 (2006).

    PubMed 

    Google Scholar
     

  • 222.

    Fagard, J. & Dahmen, R. Cultural influences on the development of lateral preferences: a comparison between French and Tunisian children. Laterality 9, 67–78 (2004).

    PubMed 

    Google Scholar
     

  • 223.

    Eyre, M. B. & Schmeeckle, M. M. A study of handedness, eyedness, and footedness. Child Dev. 4, 73 (1933).


    Google Scholar
     

  • 224.

    Erkec, O. E. & Keskin, S. Evaluation of relationships between postural and functional lateral preferences and chewing side among students in Eastern Turkey. East. J. Med. 2017, 163–168 (2017).


    Google Scholar
     

  • 225.

    Eikenberry, A. et al. Starting with the “right” foot minimizes sprint start time. Acta Physiol. (Oxf) 127, 495–500 (2008).


    Google Scholar
     

  • 226.

    Dittmar, M. Functional and postural lateral preferences in humans: interrelations and life-span age differences. Hum. Biol. 74, 569–585 (2002).

    PubMed 

    Google Scholar
     

  • 227.

    Didia, B. C. & Nyenwe, E. A. Foot breadth in children—its relationship to limb dominance and age. Foot Ankle 8, 198–202 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • 228.

    DeLang, M. D., Kondratek, M., DiPace, L. J. & Hew-Butler, T. Collegiate male soccer players exhibit between-limb symmetry in body composition, muscle strength, and range of motion. Int. J. Sports Phys. Therapy 12, 1087–1094 (2017).


    Google Scholar
     

  • 229.

    Coren, S. & Searleman, A. Left sidedness and sleep difficulty: the alinormal syndrome. Brain Cogn. 6, 184–192 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 230.

    Coren, S., Porac, C. & Duncan, P. Lateral preference behaviors in preschool children and young adults. Child Dev. 52, 443 (1981).


    Google Scholar
     

  • 231.

    Coren, S. & Porac, C. Lateral preference and cognitive skills: an indirect test. Percept. Mot. Skills 54, 787–792 (1982).


    Google Scholar
     

  • 232.

    Coren, S. & Porac, C. Birth factors and laterality: effects of birth order, parental age, and birth stress on four indices of lateral preference. Behav. Genet. 10, 123–138 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • 233.

    Challis, J. H. & Howse, B. N. Bilateral symmetry in achilles tendon mechanical properties.

  • 234.

    Carter, S. L., Bryant, A. R. & Hopper, L. S. An analysis of the foot in turnout using a dance specific 3D multi-segment foot model. J. Foot Ankle Res. 12, 10 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 235.

    Carpes, F. P. et al. Does leg preference affect muscle activation and efficiency?. J. Electromyogr. Kinesiol. 20, 1230–1236 (2010).

    PubMed 

    Google Scholar
     

  • 236.

    Carey, D. P. et al. The bi-pedal ape: plasticity and asymmetry in footedness. Cortex 45, 650–661 (2009).

    PubMed 

    Google Scholar
     

  • 237.

    Cameron, M. & Adams, R. Kicking footedness and movement discrimination by elite australian rules footballers. J. Sci. Med. Sport 6, 266–274 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 238.

    Bussey, M. D. Does the demand for asymmetric functional lower body postures in lateral sports relate to structural asymmetry of the pelvis?. J. Sci. Med. Sport 13, 360–364 (2010).

    PubMed 

    Google Scholar
     

  • 239.

    Bohannon, R. W. Cinematographic analysis of the passive straight-leg-raising test for hamstring muscle length. Phys. Ther. 62, 1269–1274 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • 240.

    Bini, R. R., Jacques, T. C., Sperb, C. H., Lanferdini, F. J. & Vaz, M. A. Pedal force asymmetries and performance during a 20-km cycling time trial. Kinesiology (Zagreb, Online) 48, 193–199 (2016).


    Google Scholar
     

  • 241.

    Bhushan, B. & Khan, S. M. Laterality and accident proneness: a study of locomotive drivers. Laterality 11, 395–404 (2006).

    PubMed 

    Google Scholar
     

  • 242.

    Bhushan, B., Prakash, A. & Gupta, R. Lateralization pattern in patients with schizophrenia and depression. Internet J. Med. Update E J. 3 (2008).

  • 243.

    Belmont, L. & Birch, H. G. Lateral dominance and right-left awareness in normal children. Child Dev. 34, 257 (1963).

    CAS 
    PubMed 

    Google Scholar
     

  • 244.

    Bell, J. & Gabbard, C. Foot preference changes through adulthood. Laterality 5, 63–68 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 245.

    Barcellos, D. C. et al. Absence or weak correlation between chewing side preference and lateralities in primary, mixed and permanent dentition. Arch. Oral Biol. 57, 1086–1092 (2012).

    PubMed 

    Google Scholar
     

  • 246.

    Bacik, B., Sobota, G., Fredyk, A., Juras, G. & Słomka, K. J. Postural sway during single-legged standing is dependent on the preceding and subsequent action and supports the stability and mobility trade-off hypothesis in classical dancers. Sports Biomech. 2019, 1–14 (2019).


    Google Scholar
     

  • 247.

    Atun-Einy, O. Asymmetrical motor behaviour as a window to early leg preference: a longitudinal study in infants 7–12 months of age. Laterality 21, 177–199 (2016).

    PubMed 

    Google Scholar
     

  • 248.

    Atalaia, T., Abrantes, J. & Castro-Caldas, A. Influence of footedness on dynamic joint stiffness during the gait stance phase. JSRR 5, 175–183 (2015).


    Google Scholar
     

  • 249.

    Asai, T., Sugimori, E. & Tanno, Y. A psychometric approach to the relationship between hand-foot preference and auditory hallucinations in the general population: atypical cerebral lateralization may cause an abnormal sense of agency. Psychiatry Res. 189, 220–227 (2011).

    PubMed 

    Google Scholar
     

  • 250.

    Armitage, M. & Larkin, D. Laterality, motor asymmetry and clumsiness in children. Hum. Mov. Sci. 12, 155–177 (1993).


    Google Scholar
     

  • 251.

    Antosiak-Cyrak, K., Podciechowska, K. & Jajor, J. U. R. E. L. Functional asymmetry of the lower limbs in young soccer players. Trends Sport Sci. 2015, 207–221 (2015).


    Google Scholar
     

  • 252.

    Antonarakis, E. S. Orientation of the stethoscope around the neck: a random phenomenon or an indicator of cerebral lateralisation? Cross-sectional survey. Laterality 11, 287–293 (2006).

    PubMed 

    Google Scholar
     

  • 253.

    Annett, M. Subgroup handedness and the probability of nonright preference for foot or eye and of a nonright-handed parent. Percept. Mot. Skills 93, 911–914 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 254.

    Alzahrani, A.D.M. Effects of depression, stress and other factors on cradling bias in Saudi males and females (2012).

  • 255.

    de Agostini, M. & Dellatolas, G. Lateralities in normal children ages 3 to 8 and their role in cognitive performances. Dev. Neuropsychol. 20, 429–444 (2001).

    PubMed 

    Google Scholar
     

  • 256.

    Abraham, A., Sannasi, R. & Nair, R. Normative values for the functional movement screentm in adolescent school aged children. Int. J. Sports Phys. Therapy 10, 29–36 (2015).


    Google Scholar
     

  • 257.

    Abubakar, N. M. et al. Handedness, eyedness, footedness, crossed dominance and digit ratio in nigerian people. J. Res. Med. Dent. Sci. 2018, 62–69 (2018).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *