Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes


  • 1.

    Oparin, A. I. Origin of Life (Dover, 1953).

  • 2.

    Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Pawson, T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191–203 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    You, L., Cox, R. S., Weiss, R. & Arnold, F. H. Programmed population control by cell–cell communication and regulated killing. Nature 428, 868–871 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Bacchus, W. et al. Synthetic two-way communication between mammalian cells. Nat. Biotechnol. 30, 991–996 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Na, S. et al. Rapid signal transduction in living cells is a unique feature of mechanotransduction. Proc. Natl. Acad. Sci. USA 105, 6626–6631 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Trepat, X. et al. Universal physical responses to stretch in the living cell. Nature 447, 592–595 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Merindol, R., Loescher, S., Samanta, A. & Walther, A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nat. Nanotechnol. 13, 730–738 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Merindol, R., Delechiave, G., Heinen, L., Catalani, L. H. & Walther, A. Modular design of programmable mechanofluorescent DNA hydrogels. Nat. Commun. 10, 528 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Martin, N. Dynamic synthetic cells based on liquid–liquid phase separation. ChemBioChem 20, 2553–2568 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl. Acad. Sci. USA 110, 11692–11697 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Zwicker, D., Seyboldt, R., Weber, C. A., Hyman, A. A. & Jülicher, F. Growth and division of active droplets provides a model for protocells. Nat. Phys. 13, 408–413 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Changeux, J.-P. & Christopoulos, A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell 166, 1084–1102 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Strulson, C. A., Molden, R. C., Keating, C. D. & Bevilacqua, P. C. RNA catalysis through compartmentalization. Nat. Chem. 4, 941–946 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Booth, R., Qiao, Y., Li, M. & Mann, S. Spatial positioning and chemical coupling in coacervate-in-proteinosome protocells. Angew. Chem. Int. Ed. 58, 9120–9124 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Mansy, S. S. et al. Template-directed synthesis of a genetic polymer in a model protocell. Nature 454, 122–125 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Adamala, K. & Szostak, J. W. Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342, 1098–1100 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Adamala, K. & Szostak, J. W. Competition between model protocells driven by an encapsulated catalyst. Nat. Chem. 5, 495–501 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Langton, M. J., Scriven, L. M., Williams, N. H. & Hunter, C. A. Triggered release from lipid bilayer vesicles by an artificial transmembrane signal transduction system. J. Am. Chem. Soc. 139, 15768–15773 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Fulton, A. B. How crowded is the cytoplasm? Cell 30, 345–347 (1982).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Gobbo, P. et al. Programmed assembly of synthetic protocells into thermoresponsive prototissues. Nat. Mater. 17, 1145–1153 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Joesaar, A. et al. DNA-based communication in populations of synthetic protocells. Nat. Nanotechnol. 14, 369–378 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Wilson, M. E. & Whitesides, G. M. Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J. Am. Chem. Soc. 100, 306–307 (1978).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Okamoto, Y. et al. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nat. Commun. 9, 1943 (2018).

    Article 

    Google Scholar
     

  • 28.

    Fan, X. et al. Optimized tetrazine derivatives for rapid bioorthogonal decaging in living cells. Angew. Chem. Int. Ed. 55, 14046–14050 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Sabatino, V., Rebelein, J. G. & Ward, T. R. “Close-to-release”: spontaneous bioorthogonal uncaging resulting from ring-closing metathesis. J. Am. Chem. Soc. 141, 17048–17052 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Wilner, O. I. et al. Enzyme cascades activated on topologically programmed DNA scaffolds. Nat. Nanotechnol. 4, 249–254 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Ou, C.-N., Tsai, C.-H., Tapley, K. J. & Song, P.-S. Photobinding of 8-methoxypsoralen and 5,7-dimethoxycoumarin to DNA and its effect on template activity. Biochemistry 17, 1047–1053 (1978).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Banks, T. M., Clay, S. F., Glover, S. A. & Schumacher, R. R. Mutagenicity of N-acyloxy-N-alkoxyamides as an indicator of DNA intercalation part 1: evidence for naphthalene as a DNA intercalator. Org. Biomol. Chem. 14, 3699–3714 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Ellis, R. J. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604 (2001).

    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *