Fungal attack on archaeological wooden artefacts in the Arctic—implications in a changing climate


  • 1.

    Hellmann, L. et al. Tracing the origin of Arctic driftwood. J. Geophys. Res. Biogeosci. 118, 68–76. https://doi.org/10.1002/jgrg.20022 (2013).

    Article 

    Google Scholar
     

  • 2.

    Hollesen, J. et al. Climate change and the preservation of archaeological sites in Greenland. In Public Archaeology and Climate Change (eds Dawson, T. et al.) 90–99 (Oxbow Books, London, 2017).


    Google Scholar
     

  • 3.

    Grønnow, B. The Frozen Saqqaq Sites of Disko Bay, West Greenland, Qeqertasussuk and Qajaa (2400–900 BC), Studies of Saqqaq Material Culture in an Eastern Arctic Perspective (Museum Tusculanum, Copenhagen, 2017).


    Google Scholar
     

  • 4.

    ICPP. Summary for Policymakers. Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge, UK and New York, NY, USA, 2013).

  • 5.

    Kaufman, D. S. et al. Recent warming reverses long-term arctic cooling. Science 325, 1236–1239. https://doi.org/10.1126/science.1173983 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Matthiesen, H., Jensen, J. B., Gregory, D., Hollesen, J. & Elberling, B. Degradation of archaeological wood under freezing and thawing conditions—effects of permafrost and climate change. Archaeometry 56, 476–495. https://doi.org/10.1111/arcm.12023 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Hollesen, J. et al. Predicting the loss of organic archaeological deposits at a regional scale in Greenland. Sci. Rep. 9, 9097. https://doi.org/10.1038/s41598-019-45200-4 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Elberling, B. et al. Paleo-Eskimo kitchen midden preservation in permafrost under future climate conditions at Qajaa, West Greenland. J. Archaeol. Sci. 38, 1331–1339. https://doi.org/10.1016/j.jas.2011.01.011 (2011).

    Article 

    Google Scholar
     

  • 9.

    Hollesen, J. et al. The future preservation of a permanently frozen kitchen midden in western Greenland. Conserv. Manag. Archaeol. Sites 14, 159–168. https://doi.org/10.1179/1350503312z.00000000013 (2012).

    Article 

    Google Scholar
     

  • 10.

    Held, B. W., Jurgens, J. A., Duncan, S. M., Farrell, R. L. & Blanchette, R. A. Assessment of fungal diversity and deterioration in a wooden structure at New Harbor, Antarctica. Polar Biol. 29, 526. https://doi.org/10.1007/s00300-005-0084-3 (2005).

    Article 

    Google Scholar
     

  • 11.

    Arenz, B. E. & Blanchette, R. A. Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can. J. Microbiol. 55, 46–56. https://doi.org/10.1139/w08-120 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Blanchette, R. A. et al. An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds. Microb. Ecol. 60, 29–38. https://doi.org/10.1007/s00248-010-9664-z (2010).

    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Arenz, B. E., Held, B. W., Jurgens, J. A. & Blanchette, R. A. Fungal colonization of exotic substrates in Antarctica. Fungal Divers. 49, 13–22. https://doi.org/10.1007/s13225-010-0079-4 (2011).

    Article 

    Google Scholar
     

  • 14.

    Blanchette, R. A., Held, B. W., Hellmann, L., Millman, L. & Büntgen, U. Arctic driftwood reveals unexpectedly rich fungal diversity. Fungal Ecol. 23, 58–65. https://doi.org/10.1016/j.funeco.2016.06.001 (2016).

    Article 

    Google Scholar
     

  • 15.

    Arenz, B. E. & Blanchette, R. A. Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol. Biochem. 43, 308–315. https://doi.org/10.1016/j.soilbio.2010.10.016 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Daniel, G. & Nilsson, T. Developments in the study of soft rot and bacterial decay. In Forest Products Biotechnology (eds Bruce, A. & Palfreyman, J. W.) 37–62 (Taylor & Francis, Abingdon, 1998).


    Google Scholar
     

  • 17.

    Kim, Y. S. & Singh, A. P. Micromorphological characteristics of wood biodegradation in wet environments: a review. Iawa J. 21, 135–155. https://doi.org/10.1163/22941932-90000241 (2000).

    Article 

    Google Scholar
     

  • 18.

    Pedersen, N. B., Björdal, C. G., Jensen, P. & Felby, C. Stability of Complex Carbohydrate Structures. Biofuel, Foods, Vaccines and Shipwrecks, Vol. 341 Special Publication (ed. Harding, S. E.) 160–187 (The Royal Society of Chemistry, London, 2013).

  • 19.

    Knudsen, H., Hallenberg, N. & Mukhin, V. A. A comparison of wood-inhabiting basidiomycetes from three valleys in Greenland. In Arctic and Alpine Mycology 3–4. Proceedings of the Third and Fourth International Symposium on Arcto-Alpine Mycology (eds. Orlando, P. & Laursen, G. A.) 133–145 (J. Cramer, Svalbard, 1993).

  • 20.

    Ludley, K. E. & Robinson, C. H. ‘Decomposer’ Basidiomycota in Arctic and Antarctic ecosystems. Soil Biol. Biochem. 40, 11–29. https://doi.org/10.1016/j.soilbio.2007.07.023 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Held, B. W. & Blanchette, R. A. Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi. Fungal Biol. 121, 145–157. https://doi.org/10.1016/j.funbio.2016.11.009 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Mattsson, J., Flyen, A.-C. & Nunez, M. Wood-decaying fungi in protected buildings and structures on Svalbard. Agarica 29, 5–14 (2010).


    Google Scholar
     

  • 23.

    Björdal, C. G. & Nilsson, T. Waterlogged archaeological wood—a substrate for white rot fungi during drainage of wetlands. Int. Biodeterior. Biodegrad. 50, 17–23. https://doi.org/10.1016/S0964-8305(01)00130-5 (2002).

    Article 

    Google Scholar
     

  • 24.

    Blanchette, R. A., Nilsson, T., Daniel, G. & Abad, A. Biological degradation of wood. In Archaeological Wood Advances in Chemistry (eds Rowell, R. M. & Barbour, R. J.) 141–174 (American Chemical Society, Washington, 1990).


    Google Scholar
     

  • 25.

    Schwarze, F. W. M. R. Wood decay under the microscope. Fungal Biol. Rev. 21, 133–170. https://doi.org/10.1016/j.fbr.2007.09.001 (2007).

    Article 

    Google Scholar
     

  • 26.

    Anagnost, S. E., Meyer, R. W. & Dezeeuw, C. Confirmation and significance of Bartholin method for the identification of the wood of Picea and Larix. Iawa J. 15, 171–184. https://doi.org/10.1163/22941932-90001359 (1994).

    Article 

    Google Scholar
     

  • 27.

    Normand, S. et al. A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Philos. Trans. R. Soc. B 368, 20120479. https://doi.org/10.1098/rstb.2012.0479 (2013).

    Article 

    Google Scholar
     

  • 28.

    Blanchette, R. A. et al. Wood-destroying soft rot fungi in the historic expedition huts of Antarctica. J. Appl. Environ. Microbiol. 70, 1328–1335. https://doi.org/10.1128/AEM.70.3.1328-1335.2004 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Jurgens, J. A., Blanchette, R. A. & Filley, T. R. Fungal diversity and deterioration in mummified woods from the ad Astra Ice Cap region in the Canadian High Arctic. Polar Biol. 32, 751–758. https://doi.org/10.1007/s00300-008-0578-x (2009).

    Article 

    Google Scholar
     

  • 30.

    Baral, H.-O. & Carter, A. Patinella hyalophaea Sacc.—rediscovered in New Brunswick, Canada. Ascomycete.org 5, 91–96. https://doi.org/10.25664/art-0083 (2013).

    Article 

    Google Scholar
     

  • 31.

    Crous, P. W. Persoonial reflections. Xenopolyscytalum Cros. gen. nov. Fungal Planet 55. Persoonia 25, 130–131. https://doi.org/10.3767/003158510X552636 (2010).

    Article 

    Google Scholar
     

  • 32.

    Eriksson, K.-E.L., Blanchette, R. A. & Ander, P. Microbial and Enzymatic Degradation of Wood and Wood Components (Springer, Berlin, 1990).


    Google Scholar
     

  • 33.

    33IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1535 pp. (Cambridge University Press, Cambridge, 2013).

  • 34.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179. https://doi.org/10.1038/nature14338 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015–1033. https://doi.org/10.5194/tc-11-1015-2017 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Westergaard-Nielsen, A., Karami, M., Hansen, B. U., Westermann, S. & Elberling, B. Contrasting temperature trends across the ice-free part of Greenland. Sci. Rep. 8, 6. https://doi.org/10.1038/s41598-018-19992-w (2018).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Schweingruber, F. H. Microscopic Wood Anatomy/Mikroskopische Holzanatomie/Anatomie Microscopique du Bois: Structural Variability of Stems and Twigs in Recent and Subfossil Woods from Central Europe 3rd edn. (Swiss Federal Institute for Forest, Snow and Landscape Research, Zurich, 1990).


    Google Scholar
     

  • 38.

    Björdal, C. G., Daniel, G. & Nilsson, T. Depth of burial, an important factor in controlling bacterial decay of waterlogged archaeological poles. Int. Biodeterior. Biodegrad. 45, 15–26. https://doi.org/10.1016/S0964-8305(00)00035-4 (2000).

    Article 

    Google Scholar
     

  • 39.

    Reinprecht, L. Wood Deterioration, Protection and Maintenance (Wiley, Chichester, 2016).


    Google Scholar
     

  • 40.

    Coyne, K. J. et al. Improved quantitative real-time PCR assays for enumeration of harmful algal species in field samples using an exogenous DNA reference standard. Limnol. Oceanogr. Methods 3, 381–391. https://doi.org/10.4319/lom.2005.3.381 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Børja, I., Alfredsen, G., Filbakk, T. & Fossdal, C. G. DNA quantification of basidiomycetous fungi during storage of logging residues. PeerJ 3, e887. https://doi.org/10.7717/peerj.887 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Pilgard, A., Alfredsen, G., Bjordal, C. G., Fossdal, C. G. & Borja, I. qPCR as a tool to study basidiomycete colonization in wooden field stakes. Holzforschung 65, 889–895. https://doi.org/10.1515/hf.2011.079 (2011).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *