Gelling hypotonic polymer solution for extended topical drug delivery to the eye


  • 1.

    Urtti, A., Pipkin, J. D., Rork, G. & Repta, A. J. Controlled drug delivery devices for experimental ocular studies with timolol 1. In vitro release studies. Int. J. Pharm. 61, 235–240 (1990).

    CAS 

    Google Scholar
     

  • 2.

    Hermann, M. M., Papaconstantinou, D., Muether, P. S., Georgopoulos, G. & Diestelhorst, M. Adherence with brimonidine in patients with glaucoma aware and not aware of electronic monitoring. Acta Ophthalmol. 89, E300–E305 (2011).

    PubMed 

    Google Scholar
     

  • 3.

    Agrawal, A. K., Das, M. & Jain, S. In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin. Drug Del. 9, 383–402 (2012).

    CAS 

    Google Scholar
     

  • 4.

    Dumortier, G., Grossiord, J. L., Agnely, F. & Chaumeil, J. C. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res. 23, 2709–2728 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Rowe, R. C., Sheskey, P. J., Owen, S. C. & American Pharmacists Association. Handbook of Pharmaceutical Excipients 6th edn (Pharmaceutical Press, 2009).

  • 6.

    Escobar-Chavez, J. J. et al. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J. Pharm. Pharm. Sci. 9, 339–358 (2006).

    CAS 

    Google Scholar
     

  • 7.

    Schuster, B. S., Ensign, L. M., Allan, D. B., Suk, J. S. & Hanes, J. Particle tracking in drug and gene delivery research: state-of-the-art applications and methods. Adv. Drug Deliv. Rev. 91, 70–91 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Squires, T. M. & Mason, T. G. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413–438 (2010).


    Google Scholar
     

  • 9.

    Ensign, L. M., Schneider, C., Suk, J. S., Cone, R. & Hanes, J. Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery. Adv. Mater. 24, 3887–3894 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Zignani, M., Tabatabay, C. & Gurny, R. Topical semi-solid drug delivery: kinetics and tolerance of ophthalmic hydrogels. Adv. Drug Deliv. Rev. 16, 51–60 (1995).

    CAS 

    Google Scholar
     

  • 11.

    Cantor, L. B. Brimonidine in the treatment of glaucoma and ocular hypertension. Ther. Clin. Risk Manag. 2, 337–346 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    McDougal, A. J. (ed.) Pharmacology/Toxicology NDA Review And Evaluation Simbrinza (NDA204251) (Food and Drug Administration Center for Drug Evaluation and Research, 2012).

  • 13.

    Hackett, S. F. et al. Sustained delivery of acriflavine from the suprachoroidal space provides long term suppression of choroidal neovascularization. Biomaterials 243, 119935 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Tsujinaka, H. et al. Sustained treatment of retinal vascular diseases with self-aggregating sunitinib microparticles. Nat. Commun. 11, 694 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Fathalla, Z. M. A. et al. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: design, characterisation, toxicity and transcorneal permeation studies. Eur. J. Pharm. Biopharm. 114, 119–134 (2017).

    CAS 

    Google Scholar
     

  • 16.

    Abdelkader, H., Ismail, S., Kamal, A. & Alany, R. G. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J. Pharm. Sci. 100, 1833–1846 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Rodrigues, G. A. et al. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm. Res. 35, 245 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Goodman, V. L. et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin. Cancer Res. 13, 1367–1373 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Roskoski, R. Jr. Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem. Biophys. Res. Commun. 356, 323–328 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Craig, J. P., Simmons, P. A., Patel, S. & Tomlinson, A. Refractive index and osmolality of human tears. Optom. Vis. Sci. 72, 718–724 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Gonzalez-Meijome, J. M. et al. Refractive index and equilibrium water content of conventional and silicone hydrogel contact lenses. Ophthalmic Physiol. Opt. 26, 57–64 (2006).

    PubMed 

    Google Scholar
     

  • 22.

    Patel, A., Cholkar, K., Agrahari, V. & Mitra, A. K. Ocular drug delivery systems: an overview. World J. Pharm. 2, 47–64 (2013).

    CAS 

    Google Scholar
     

  • 23.

    Deokule, S., Sadiq, S. & Shah, S. Chronic open angle glaucoma: patient awareness of the nature of the disease, topical medication, compliance and the prevalence of systemic symptoms. Ophthal. Physiol. Opt. 24, 9–15 (2004).


    Google Scholar
     

  • 24.

    Inoue, K. Managing adverse effects of glaucoma medications. Clin. Ophthalmol. 8, 903–913 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Schwartz, G. F. & Quigley, H. A. Adherence and persistence with glaucoma therapy. Surv. Ophthalmol. 53 (Suppl. 1), S57–S68 (2008).

    PubMed 

    Google Scholar
     

  • 26.

    Stewart, W. C., Chorak, R. P., Hunt, H. H. & Sethuraman, G. Factors associated with visual loss in patients with advanced glaucomatous changes in the optic nerve head. Am. J. Ophthalmol. 116, 176–181 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Shedden, A., Laurence, J., Tipping, R. & Timoptic, X. E. S. G. Efficacy and tolerability of timolol maleate ophthalmic gel-forming solution versus timolol ophthalmic solution in adults with open-angle glaucoma or ocular hypertension: a six-month, double-masked, multicenter study. Clin. Ther. 23, 440–450 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Walters, T. R. et al. Efficacy and tolerability of 0.5% timolol maleate ophthalmic gel-forming solution QD compared with 0.5% levobunolol hydrochloride BID in patients with open-angle glaucoma or ocular hypertension. Clin. Therapeutics 20, 1170–1178 (1998).

    CAS 

    Google Scholar
     

  • 29.

    Lira, M., Pereira, C., Real Oliveira, M. E. & Castanheira, E. M. Importance of contact lens power and thickness in oxygen transmissibility. Cont. Lens Anterior Eye 38, 120–126 (2015).

    PubMed 

    Google Scholar
     

  • 30.

    Olsen, T. On the calculation of power from curvature of the cornea. Br. J. Ophthalmol. 70, 152–154 (1986).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 31.

    Jager, R. D., Aiello, L. P., Patel, S. C. & Cunningham, E. T. Risks of intravitreous injection: a comprehensive review. Retina 24, 676–698 (2004).

    PubMed 

    Google Scholar
     

  • 32.

    Singer, M. A. et al. HORIZON: an open-label extension trial of ranibizumab for choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology 119, 1175–1183 (2012).

    PubMed 

    Google Scholar
     

  • 33.

    Friedrich, S., Cheng, Y. L. & Saville, B. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr. Eye Res. 16, 663–669 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Kaplan, H. J., Chiang, C. W., Chen, J. & Song, S. K. Vitreous volume of the mouse measured by quantitative high-resolution MRI. Invest. Ophthalmol. Vis. Sci. 51, 4414 (2010).


    Google Scholar
     

  • 35.

    Doughty, M. J. & Zaman, M. L. Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach. Surv. Ophthalmol. 44, 367–408 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Zhang, H. et al. The measurement of corneal thickness from center to limbus in vivo in C57BL/6 and BALB/c mice using two-photon imaging. Exp. Eye Res. 115, 255–262 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Park, H. et al. Assessment of axial length measurements in mouse eyes. Optom. Vis. Sci. 89, 296–303 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Bekerman, I., Gottlieb, P. & Vaiman, M. Variations in eyeball diameters of the healthy adults. J. Ophthalmol. 2014, 503645 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Iwase, T. et al. Topical pazopanib blocks VEGF-induced vascular leakage and neovascularization in the mouse retina but is ineffective in the rabbit. Invest. Ophthalmol. Vis. Sci. 54, 503–511 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Boettger, M. K., Klar, J., Richter, A. & von Degenfeld, G. Topically administered regorafenib eye drops inhibit grade IV lesions in the non-human primate laser CNV model. Invest. Ophthalmol. Vis. Sci. 56, 2294 (2015).


    Google Scholar
     

  • 41.

    Joussen, A. M. et al. The developing regorafenib eye drops for neovascular age-related macular degeneration (DREAM) study: an open-label phase II trial. Brit J. Clin. Pharm. 85, 347–355 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Horita, S. et al. Species differences in ocular pharmacokinetics and pharmacological activities of regorafenib and pazopanib eye-drops among rats, rabbits and monkeys. Pharmacol. Res. Perspect. 7, e00545 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Loftsson, T., Hreinsdottir, D. & Stefansson, E. Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: aqueous dexamethasone eye drops. J. Pharm. Pharmacol. 59, 629–635 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Ohira, A. et al. Topical dexamethasone γ-cyclodextrin nanoparticle eye drops increase visual acuity and decrease macular thickness in diabetic macular oedema. Acta Ophthalmol. 93, 610–615 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Gilger, B. C. Ocular Pharmacology and Toxicology (Humana Press, 2014).

  • 46.

    Ruiz-Ederra, J. et al. The pig eye as a novel model of glaucoma. Exp. Eye Res. 81, 561–569 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Olsen, T. W., Aaberg, S. Y., Geroski, D. H. & Edelhauser, H. F. Human sclera: thickness and surface area. Am. J. Ophthalmol. 125, 237–241 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Vurgese, S., Panda-Jonas, S. & Jonas, J. B. Scleral thickness in human eyes. PLoS ONE 7, e29692 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Olsen, T. W., Sanderson, S., Feng, X. & Hubbard, W. C. Porcine sclera: thickness and surface area. Invest. Ophthalmol. Vis. Sci. 43, 2529–2532 (2002).

    PubMed 

    Google Scholar
     

  • 50.

    Struble, C., Howard, S. & Relph, J. Comparison of ocular tissue weights (volumes) and tissue collection techniques in commonly used preclinical animal species. Acta Opthalmol. 92, https://doi.org/10.1111/j.1755-3768.2014.S005.x (2014).


    Google Scholar
     

  • 51.

    Rajapaksa, T. E. et al. Intranasal M cell uptake of nanoparticles is independently influenced by targeting ligands and buffer ionic strength. J. Biol. Chem. 285, 23739–23746 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Ensign, L. M., Hoen, T. E., Maisel, K., Cone, R. A. & Hanes, J. S. Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake. Biomaterials 34, 6922–6929 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Pihl, L., Wilander, E. & Nylander, O. Comparative study of the effect of luminal hypotonicity on mucosal permeability in rat upper gastrointestinal tract. Acta Physiol. 193, 67–78 (2008).

    CAS 

    Google Scholar
     

  • 54.

    Noach, A. B. J. et al. Effect of anisotonic conditions on the transport of hydrophilic model compounds across monolayers of human colonic cell lines. J. Pharmacol. Exp. Ther. 270, 1373–1380 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Nance, E. A. et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4, 149ra119 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Wilhelmus, K. R. The draize eye test. Surv. Ophthalmol. 45, 493–515 (2001).

    CAS 

    Google Scholar
     

  • 57.

    Wolffsohn, J. S. et al. TFOS DEWS II diagnostic methodology report. Ocul. Surf. 15, 539–574 (2017).

    PubMed 

    Google Scholar
     

  • 58.

    Bron, A. J., Evans, V. E. & Smith, J. A. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea 22, 640–650 (2003).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *