Global allele polymorphism indicates a high rate of allele genesis at a locus under balancing selection


  • Amos W (2009) Heterozygosity and mutation rate: evidence for an interaction and its implications. Bioessays 32:82–90


    Google Scholar
     

  • Amos W, Kosanović D, Eriksson A (2015) Inter-allelic interactions play a major role in microsatellite evolution. Proc R Soc B 282:20152125

    PubMed 

    Google Scholar
     

  • Amos W (2016) Heterozygosity increases microsatellite mutation rate. Biol Lett 12:20150929

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azevedo L, Serrano C, Amorim A, Cooper DN (2015) Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. Hum Genomics 9:21

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419–429

    CAS 
    PubMed 

    Google Scholar
     

  • Beye M, Seelmann C, Gempe T, Hasselmann M, Vekemans X, Fondrk MK et al. (2013) Gradual molecular evolution of a sex determination switch through incomplete penetrance of femaleness. Curr Biol 23:2559–2564

    CAS 
    PubMed 

    Google Scholar
     

  • Bezabih G, Adgaba N, Hepburn HR, Pirk CWW (2014) The territorial invasion of Apis florea in Africa. Afr Entomol 22:888–890


    Google Scholar
     

  • Biewer M, Lechner S, Hasselmann M (2016) Similar but not the same: insights into the evolutionary history of paralogous sex-determining genes of the dwarf honey bee Apis florea. Heredity 116:12–22

    CAS 
    PubMed 

    Google Scholar
     

  • Chapuis MP, Plantamp C, Streiff R, Blondin L, Piou C (2015) Microsatellite evolutionary rate and pattern in Schistocerca gregaria inferred from direct observation of germline mutations. Mol Ecol 24:6107–6119

    CAS 
    PubMed 

    Google Scholar
     

  • Chookajorn T, Kachroo A, Ripoll DR, Clark AG, Nasrallah JB (2004) Specificity determinants and diversification of the Brassica self-incompatibility pollen ligand. Proc Natl Acad Sci USA 101:911–917

    CAS 
    PubMed 

    Google Scholar
     

  • Cho S, Huang ZY, Green DR, Smith DR, Zhang J (2006) Evolution of the complementary sex-determination gene of honey bees: balancing selection and trans-species polymorphisms. Genome Res 16:1366–1375

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke BC (1979) The evolution of genetic diversity. Proc R Soc B 205:453–474

    CAS 

    Google Scholar
     

  • Ding G, Xu H, Oldroyd BP, Gloag RS (2017) Extreme polyandry aids the establishment of invasive populations of a social insect. Heredity 119:381–387

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    CAS 
    PubMed 

    Google Scholar
     

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glémin S, Gaude T, Guillemin ML, Lourmas M, Olivieri I, Mignot A (2005) Balancing selection in the wild: testing population genetics theory of self-incompatibility in the rare species Brassica insularis. Genetics 171:279–289

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gervais CE, Castric V, Ressayre A, Billiard S (2011) Origin and diversification dynamics of self-incompatibility haplotypes. Genetics 188:625–636

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582

    CAS 
    PubMed 

    Google Scholar
     

  • Gloag R, Christie JR, Ding G, Stephens R, Buchmann G, Oldroyd BP (2019) Workers’ sons rescue genetic diversity at the sex locus in an invasive honey bee population. Mol Ecol 28:1585–1592

    PubMed 

    Google Scholar
     

  • Gloag R, Ding G, Christie JR, Buchmann G, Beekman M, Oldroyd BP (2017) An invasive social insect overcomes genetic load at the sex locus. Nat Ecol Evol 1:1–6


    Google Scholar
     

  • Hasselmann M, Beye M (2004) Signatures of selection among sex-determining alleles of the honey bee. Proc Natl Acad Sci USA 101:4888–4893

    CAS 
    PubMed 

    Google Scholar
     

  • Hasselmann M, Vekemans X, Pflugfelder J, Koeniger N, Koeniger G, Tingek S et al. (2008) Evidence for convergent nucleotide evolution and high allelic turnover rates at the complementary sex determiner gene of Western and Asian honeybees. Mol Biol Evol 25:696–708

    CAS 
    PubMed 

    Google Scholar
     

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    CAS 
    PubMed 

    Google Scholar
     

  • Koch V, Nissen I, Schmitt BD, Beye M (2014) Independent evolutionary origin of fem paralogous genes and complementary sex determination in hymenopteran insects. PLoS ONE 9:e91883

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koetz AH (2013) Ecology, behaviour and control of Apis cerana with a focus on relevance to the Australian incursion. Insects 4:558–592

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901

    PubMed 

    Google Scholar
     

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurbalija Novičić Z, Sayadi A, Jelić M, Arnqvist G (2020) Negative frequency dependent selection contributes to the maintenance of a global polymorphism in mitochondrial DNA. BMC Evol Biol 20:20. https://doi.org/10.1186/s12862-020-1581-2

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lechner S, Ferretti L, Schöning C, Kinuthia W, Willemsen D, Hasselmann M (2014) Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex-determining specificities of the honey bee Apis mellifera. Mol Biol Evol 31:272–287

    CAS 
    PubMed 

    Google Scholar
     

  • Levin BR (1988) Frequency dependent selection in bacterial populations. Philos Trans R Soc Lond B 319:459–472

    CAS 

    Google Scholar
     

  • Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    CAS 
    PubMed 

    Google Scholar
     

  • Lynch M (2015) Feedforward loop for diversity. Nature 523:414–416

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackensen O (1951) Viability and sex determination in the honeybee (Apis mellifera L.). Genetics 36:500–509

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin DP, Posada D, Crandall KA, Williamson C (2005) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21:98–102

    CAS 
    PubMed 

    Google Scholar
     

  • May G, Matzke E (1995) Recombination and variation at the A mating-type of Coprinus cinereus. Mol Biol Evol 12:794–802

    CAS 

    Google Scholar
     

  • Moritz RFA, Haddad N, Bataieneh A, Shalmon B, Hefetz A (2010) Invasion of the dwarf honeybee Apis florea into the near East. Biol Invasions 12:1093–1099


    Google Scholar
     

  • Moritz RFA, Härtel S, Neumann P (2005) Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Écoscience 12:289–301


    Google Scholar
     

  • Muirhead CA (2001) Consequences of population structure on genes under balancing selection. Evolution 55:1532–1541

    CAS 
    PubMed 

    Google Scholar
     

  • Muirhead CA, Glass NL, Slatkin M (2002) Multilocus self-recognition systems in fungi as a cause of trans-species polymorphism. Genetics 161:633–641

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nasrallah JB (1997) Evolution of the Brassica self-incompatibility locus: a look into S-locus gene polymorphisms. Proc Natl Acad Sci USA 94:9516–9519

    CAS 
    PubMed 

    Google Scholar
     

  • Nasrallah JB, Kao TH, Chen CH, Goldberg ML, Nasrallah ME (1987) Amino-acid sequence of glycoproteins encoded by three alleles of the S locus of Brassica oleracea. Nature 326:617–619

    CAS 

    Google Scholar
     

  • Oldroyd BP, Wongsiri S (2006) Asian honey bees. Biology, conservation and human interactions. Harvard University Press, Cambridge


    Google Scholar
     

  • Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 98:13757–13762

    CAS 
    PubMed 

    Google Scholar
     

  • Radloff SE, Hepburn C, Hepburn HR, Fuchs S, Hadisoesilo S, Tan K et al. (2010) Population structure and classification of Apis cerana. Apidologie 41:589–601


    Google Scholar
     

  • Raper JR (1966) Sexuality in fungi. (Book reviews: genetics of sexuality in higher fungi). Science 154:758


    Google Scholar
     

  • Richman AD, Kohn JR (1999) Self-incompatibility alleles from Physalis: implications for historical inference from balanced genetic polymorphisms. Proc Natl Acad Sci USA 96:168–172

    CAS 
    PubMed 

    Google Scholar
     

  • Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE et al. (2017) DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol 34:3299–3302

    CAS 
    PubMed 

    Google Scholar
     

  • Schierup MH, Bechsgaard JS, Christiansen FB (2008) Selection at work in self-incompatible Arabidopsis lyrata. II. Spatial distribution of S haplotypes in Iceland. Genetics 180:1051–1059

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schierup MH, Vekemans X, Charlesworth D (2000) The effect of subdivision on variation at multi-allelic loci under balancing selection. Genet Res 76:51–62

    CAS 
    PubMed 

    Google Scholar
     

  • Smith DR (2011) Asian Honeybees and Mitochondrial DNA. In: Hepburn HR, Radloff SE (eds) Honeybees of Asia. Springer-Verlag Berlin, Heidelberg, p 69–93


    Google Scholar
     

  • Solignac M, Vautrin D, Loiseau A, Mougel F, Baudry E, Estoup A et al. (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome. Mol Ecol Notes 3:307–311

    CAS 

    Google Scholar
     

  • Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi J, Shimizu S, Koyama S, Kimura K, Shimizu I, Yoshida T (2009) Variable microsatellite loci isolated from the Asian honeybee, Apis cerana (Hymenoptera; Apidae). Mol Ecol Resour 9:819–821

    CAS 
    PubMed 

    Google Scholar
     

  • Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N et al. (2014) A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet 46:1081–1088

    CAS 
    PubMed 

    Google Scholar
     

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as amedium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS 
    PubMed 

    Google Scholar
     

  • Wang J (2015) Does GST underestimate genetic differentiation from marker data? Mol Ecol 24:3546–3558

    CAS 
    PubMed 

    Google Scholar
     

  • Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL (2018) Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol 35:773–777

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woyke J (1963) What happens to diploid drone larvae in honeybee colony? J Apic Res 2:73–75


    Google Scholar
     

  • Wright S (1939) The distribution of self-sterility alleles in populations. Genetics 24:538–552

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu Q, Han TS, Chen X, Chen JF, Zou YP, Li ZW et al. (2017) Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biol 18:217

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang S, Wang L, Huang J, Zang X, Yuan Y, Chen JQ et al. (2015) Parent-progeny sequencing indicates higher mutation rates in heterozygotes. Nature 523:463–467

    CAS 
    PubMed 

    Google Scholar
     

  • Yokoyama S, Nei M (1979) Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants. Genetics 91:609–626

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zareba J, Blazej P, Laszkiewicz A, Sniezewski L, Majkowski M, Janik S et al. (2017) Uneven distribution of complementary sex determiner (csd) alleles in Apis mellifera population. Sci Rep. 7:2317

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *