Global lake responses to climate change


  • 1.

    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).


    Google Scholar
     

  • 2.

    Gleick, P. H. Water and conflict: fresh water resources and international security. Int. Secur. 18, 79–112 (1993).


    Google Scholar
     

  • 3.

    Abell, R. et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58, 403–414 (2008).


    Google Scholar
     

  • 4.

    Rinke, K., Keller, P. S., Kong, X., Borchardt, D. & Weitere, M. in Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses (eds Schröter, M., Bonn, A., Klotz, S., Seppelt, R. & Baessler, C.) 191–195 (Springer, 2019)

  • 5.

    United Nations. Resolution adopted by the General Assembly on 25 September 2015. 21 October 2015 A/RES/70/1 (2016)

  • 6.

    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).


    Google Scholar
     

  • 7.

    Sharma, S. et al. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nat. Clim. Change 9, 227–231 (2019). Demonstrated that lake ice cover will severely diminish during the twenty-first century throughout the Northern Hemisphere, with many lakes no longer experiencing ice cover in winter.


    Google Scholar
     

  • 8.

    Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018). Quantified trends and characterized the drivers of change in terrestrial water storage observed by the Gravity Recovery and Climate Experiment (GRACE) satellites.


    Google Scholar
     

  • 9.

    Wang, W. et al. Global lake evaporation accelerated by changes in surface energy allocation in a warmer climate. Nat. Geosci. 11, 410–414 (2018). First study to demonstrate that lake evaporation will increase worldwide during the twenty-first century due to a warming of lake surface temperature and a reduction in lake ice cover.


    Google Scholar
     

  • 10.

    O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015). First global-scale analysis of satellite-derived and in situ lake surface temperature responses to climate change, showing rapid and widespread warming of lakes from 1985 to 2009.


    Google Scholar
     

  • 11.

    Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12, 271–276 (2019). Projected that climate change will result in the worldwide alteration of lake mixing regimes by the end of the twenty-first century, which will have large implications for lake ecosystems.


    Google Scholar
     

  • 12.

    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016). Investigated the temporal and spatial variations in the availability of surface water worldwide since 1984, as well as its response to climate change and human activities.


    Google Scholar
     

  • 13.

    Walsh, S. E. et al. Global patterns of lake ice phenology and climate model simulations and observations. J. Geophys. Res. Atmos. 103, 28825–28837 (1998).


    Google Scholar
     

  • 14.

    Magnuson, J. J. et al. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289, 1743–1746 (2000). Analyzed ice-cover trends from lakes and rivers around the Northern Hemisphere using over 100 years of data.


    Google Scholar
     

  • 15.

    Brown, L. C. & Duguay, C. R. The response and role of ice cover in lake-climate interactions. Prog. Phys. Geogr. 34, 671–704 (2010).


    Google Scholar
     

  • 16.

    Vavrus, S. J., Wynne, R. H. & Foley, J. A. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnol. Oceanogr. 41, 822–831 (1996).


    Google Scholar
     

  • 17.

    Spence, C., Blanken, P. D., Lenters, J. D. & Hedstrom, N. The importance of spring and autumn atmospheric conditions for the evaporation regime of Lake Superior. J. Hydrometeorol. 14, 1647–1658 (2013).


    Google Scholar
     

  • 18.

    Jensen, O. P. et al. Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol. Oceanogr. 52, 2013–2026 (2007).


    Google Scholar
     

  • 19.

    Nöges, P. & Nöges, T. Weak trends in ice phenology of Estonian large lakes despite significant warming trends. Hydrobiologia 731, 5–18 (2014).


    Google Scholar
     

  • 20.

    Williams, G., Layman, K. & Stefan, H. G. Dependence of lake ice covers on climatic, geographic and bathymetric variables. Cold Reg. Sci. Technol. 40, 145–164 (2004).


    Google Scholar
     

  • 21.

    Magee, M. R. & Wu, C. H. Effects of changing climate on ice cover in three morphometrically different lakes. Hydrol. Process. 31, 308–323 (2017).


    Google Scholar
     

  • 22.

    Palecki, M. A. & Barry, R. G. Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: A case study for Finland. J. Clim. Appl. Meteorol. 25, 893–902 (1986).


    Google Scholar
     

  • 23.

    Duguay, C. R. et al. Recent trends in Canadian lake ice cover. Hydrol. Process. 20, 781–801 (2006).


    Google Scholar
     

  • 24.

    Weyhenmeyer, G. A. et al. Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes. Glob. Change Biol. 17, 268–275 (2011).


    Google Scholar
     

  • 25.

    Arp, C. D., Jones, B. M. & Gross, G. Recent lake ice-out phenology within and among lake districts of Alaska, USA. Limnol. Oceanogr. 58, 213–228 (2013).


    Google Scholar
     

  • 26.

    Benson, B. J. et al. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Clim. Change 112, 299–323 (2012).


    Google Scholar
     

  • 27.

    Sharma, S., Magnuson, J. J., Mendoza, G. & Carpenter, S. R. Influences of local weather, large-scale climatic drivers, and the ca. 11 year solar cycle on lake ice breakup dates; 1905-2004. Clim. Change 118, 857–870 (2013).


    Google Scholar
     

  • 28.

    Jakkila, J. et al. Radiation transfer and heat budget during the ice season in Lake Paajarvi, Finland. Aquat. Ecol. 43, 681–692 (2009).


    Google Scholar
     

  • 29.

    Kouraev, A. V. et al. The ice regime of Lake Baikal from historical and satellite data: Relationship to air temperature, dynamical, and other factors. Limnol. Oceanogr. 52, 1268–1286 (2007).


    Google Scholar
     

  • 30.

    Kirillin, G. et al. Physics of seasonally ice-covered lakes: a review. Aquat. Sci. 74, 659–682 (2012).


    Google Scholar
     

  • 31.

    Brown, L. C. & Duguay, C. R. The fate of lake ice in the North American Arctic. Cryosphere 5, 869–892 (2011).


    Google Scholar
     

  • 32.

    Dibike, Y., Prowse, T., Saloranta, T. & Ahmed, R. Response of Northern Hemisphere lake-ice cover and lake-water thermal structure patterns to a changing climate. Hydrol. Process. 25, 2942–2953 (2011).


    Google Scholar
     

  • 33.

    Sharma, S. et al. Direct observations of ice seasonality reveal changes in climate over the past 320–570 years. Sci. Rep. 6, 25061 (2016).


    Google Scholar
     

  • 34.

    Robertson, D. M., Wynne, R. H. & Chang, W. Y. B. Influence of El Niño on lake and river ice cover in the Northern Hemisphere from 1900 to 1995. Verh. Int. Ver. Theor. Angew. Limnol. 27, 2784–2788 (2000).


    Google Scholar
     

  • 35.

    Van Cleave, K., Lenters, J. D., Wang, J. & Verhamme, E. M. A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niñ winter of 1997–1998. Limnol. Oceanogr. 59, 1889–1898 (2014).


    Google Scholar
     

  • 36.

    Lopez, L. S., Hewitt, B. A. & Sharma, S. Reaching a break point: how is climate change influencing the timing of ice break-up in lakes across the Northern Hemisphere. Limnol. Oceanogr. 64, 2621–2631 (2019).


    Google Scholar
     

  • 37.

    Higuchi, K., Huang, J. & Shabbar, A. A wavelet characterization of the North Atlantic oscillation variation and its relationship to the North Atlantic sea surface temperature. Int. J. Climatol. 19, 1119–1129 (1999).


    Google Scholar
     

  • 38.

    Li, J. et al. Interdecadal modulation of El Niño amplitude during the past millennium. Nat. Clim. Change 1, 114–118 (2011).


    Google Scholar
     

  • 39.

    Bai, X., Wang, J., Sellinger, C., Clites, A. & Assel, R. Interannual variability of Great Lakes ice cover and its relationship to NAO and ENSO. J. Geophys. Res. Oceans 117, C03002 (2012).


    Google Scholar
     

  • 40.

    Edinger, J. E., Duttweiler, D. W. & Geyer, J. C. The response of water temperature to meteorological conditions. Water Resour. Res. 4, 1137–1143 (1968).


    Google Scholar
     

  • 41.

    Lenters, J. D., Kratz, T. K. & Bowser, C. J. Effects of climate variability on lake evaporation: results from a long-term energy budget study of Sparkling Lake, northern Wisconsin (USA). J. Hydrol. 308, 168–195 (2005).


    Google Scholar
     

  • 42.

    Austin, J. A. & Colman, S. M. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophys. Res. Lett. 34, L06604 (2007).


    Google Scholar
     

  • 43.

    Woolway, R. I. & Merchant, C. J. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci. Rep. 7, 4130 (2017).


    Google Scholar
     

  • 44.

    Schmid, M. & Köster, O. Excess warming of a Central European lake driven by solar brightening. Water Resour. Res. 52, 8103–8116 (2016).


    Google Scholar
     

  • 45.

    Zhong, Y., Notaro, M., Vavrus, S. J. & Foster, M. J. Recent accelerated warming of the Laurentian Great Lakes: Physical drivers. Limnol. Oceanogr. 61, 1762–1786 (2016).


    Google Scholar
     

  • 46.

    Woolway, R. I. et al. Northern Hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophys. Res. Lett. 46, 11983–11992 (2019).


    Google Scholar
     

  • 47.

    Råman Vinnå, L., Wüest, A., Zappa, M., Fink, G. & Bouffard, D. Tributaries affect the thermal response of lakes to climate change. Hydrol. Earth Syst. Sci. 22, 31–51 (2018).


    Google Scholar
     

  • 48.

    Rose, K. C., Winslow, L. A., Read, J. S. & Hansen, G. J. A. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol. Oceanogr. Lett. 1, 44–53 (2016).


    Google Scholar
     

  • 49.

    Pilla, R. M. et al. Browning-related decreases in water transparency lead to long-term increases in surface water temperature and thermal stratification in two small lakes. J. Geophys. Res. Biogeosci. 123, 1651–1665 (2018).


    Google Scholar
     

  • 50.

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent arctic temperature amplification. Nature 464, 1334–1337 (2010).


    Google Scholar
     

  • 51.

    Stuecker, M. F. et al. Polar amplification dominated by local forcing and feedbacks. Nat. Clim. Change 8, 1076–1081 (2018).


    Google Scholar
     

  • 52.

    Schneider, P. & Hook, S. J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 37, L22405 (2010). First worldwide study of surface-temperature trends in the largest lakes of the world.


    Google Scholar
     

  • 53.

    Groisman, P. Y., Karl, T. R. & Knight, R. W. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science 263, 198–200 (1994).


    Google Scholar
     

  • 54.

    Goose, H. et al. Quantifying climate feedbacks in polar regions. Nat. Comm. 9, 1919 (2018).


    Google Scholar
     

  • 55.

    Ye, X., Anderson, E. J., Chu, P. Y., Huang, C. & Wue, P. Impact of water mixing and ice formation on the warming of Lake Superior: a model-guided mechanism study. Limnol. Oceanogr. 64, 558–574 (2018).


    Google Scholar
     

  • 56.

    Mishra, V., Cherkauer, K. A. & Bowling, L. C. Changing thermal dynamics of lakes in the Great Lakes region: role of ice cover feedbacks. Glob. Planet Change 75, 155–172 (2011).


    Google Scholar
     

  • 57.

    Woolway, R. I. & Merchant, C. J. Intralake heterogeneity of thermal responses to climate change: A study of large northern hemisphere lakes. J. Geophys. Res. Atmos. 123, 3087–3098 (2018).


    Google Scholar
     

  • 58.

    Winslow, L. A., Reed, J. S., Hansen, G. J. A., Rose, K. C. & Robertson, D. M. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures. Limnol. Oceanogr. 62, 2168–2178 (2017).


    Google Scholar
     

  • 59.

    Woolway, R. I. et al. Warming of Central European lakes and their response to the 1980s climate regime shift. Clim. Change 142, 505–520 (2017).


    Google Scholar
     

  • 60.

    Maberly, S. C. et al. Global lake thermal regions shift under climate change. Nat. Comm. 11, 1232 (2020).


    Google Scholar
     

  • 61.

    Schindler, D. W. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 58, 18–29 (2001).


    Google Scholar
     

  • 62.

    Riveros-Iregui, D. A. et al. Evaporation from a shallow, saline lake in the Nebraska Sandhills: Energy balance drivers of seasonal and interannual variability. J. Hydrol. 553, 172–187 (2017).


    Google Scholar
     

  • 63.

    MacIntyre, S. et al. Climate-related variations in mixing dynamics in an Alaskan arctic lake. Limnol. Oceanogr. 54, 2401–2417 (2009).


    Google Scholar
     

  • 64.

    Zhan, S., Song, C., Wang, J., Sheng, Y. & Quan, J. A global assessment of terrestrial evapotranspiration increase due to surface water area change. Earths Future 7, 266–282 (2019).


    Google Scholar
     

  • 65.

    Salhotra, A. M. Effect of salinity and ionic composition on evaporation: analysis of Dead Sea evaporation pans. Water Resour. Res. 21, 1336–1344 (1985).


    Google Scholar
     

  • 66.

    Fujisaki-Manome, A. et al. Turbulent heat fluxes during an extreme lake-effect snow event. J. Hydrometeorol. 18, 3145–3163 (2017).


    Google Scholar
     

  • 67.

    Friedrich, K. et al. Reservoir evaporation in the Western United States: current science, challenges, and future needs. Bull. Am. Meteorol. Soc. 99, 167–187 (2018).


    Google Scholar
     

  • 68.

    Trenberth, K. E., Fasullo, J. T. & Kiehl, J. T. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–323 (2009).


    Google Scholar
     

  • 69.

    Wild, M. et al. The global energy balance from a surface perspective. Clim. Dyn. 40, 3107–3134 (2013).


    Google Scholar
     

  • 70.

    Verburg, P. & Antenucci, J. P. Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. J. Geophys. Res. Atmos. 115, D11109 (2010).


    Google Scholar
     

  • 71.

    Woolway, R. I. et al. Geographic and temporal variations in turbulent heat loss from lakes: A global analysis across 45 lakes. Limnol. Oceanogr. 63, 2436–2449 (2018).


    Google Scholar
     

  • 72.

    Blanken, P. D., Spence, C., Hedstrom, N. & Lenters, J. D. Evaporation from Lake Superior: 1. Physical controls and processes. J. Great Lakes Res. 37, 707–716 (2011).


    Google Scholar
     

  • 73.

    McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 416–417, 182–205 (2012).


    Google Scholar
     

  • 74.

    Watras, C. J., Morrison, K. A. & Rubsam, J. L. Effect of DOC on evaporation from small Wisconsin lakes. J. Hydrol. 540, 162–175 (2016).


    Google Scholar
     

  • 75.

    Wild, M. Global dimming and brightening: A review. J. Geophys. Res. 114, D00D16 (2009).


    Google Scholar
     

  • 76.

    Roderick, M. L. & Farquhar, G. D. The cause of decreased pan evaporation over the past 50 years. Science 298, 1410–1411 (2002).


    Google Scholar
     

  • 77.

    Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019).


    Google Scholar
     

  • 78.

    Desai, A. R., Austin, J. A., Bennington, V. & McKinley, G. A. Stronger winds over a large lake in response to weakening air-to-lake temperature gradient. Nat. Geosci. 2, 855–858 (2009).


    Google Scholar
     

  • 79.

    Roderick, M. L., Sun, F., Lim, W. H. & Farquhar, G. D. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci. 18, 1575–1589 (2014).


    Google Scholar
     

  • 80.

    Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).


    Google Scholar
     

  • 81.

    Liu, H., Blanken, P. D., Weidinger, T., Nordbo, A. & Vesala, T. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA. Environ. Res. Lett. 6, 024022 (2011).


    Google Scholar
     

  • 82.

    Watras, C. J. et al. Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: Hydroclimatic implications. Geophys. Res. Lett. 41, 456–462 (2014).


    Google Scholar
     

  • 83.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).


    Google Scholar
     

  • 84.

    Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).


    Google Scholar
     

  • 85.

    Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).


    Google Scholar
     

  • 86.

    Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).


    Google Scholar
     

  • 87.

    Liu, C. & Allen, R. P. Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ. Res. Lett. 8, 034002 (2013).


    Google Scholar
     

  • 88.

    Byrne, M. P. & O’Gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: Why the “Wet-Get-Wetter, Dry-Get-Drier” scaling does not hold over land. J. Clim. 28, 8078–8092 (2015).


    Google Scholar
     

  • 89.

    Chadwick, R., Good, P., Martin, G. & Rowell, D. P. Large rainfall changes consistently projected over substantial areas of tropical land. Nat. Clim. Change 6, 177–181 (2016).


    Google Scholar
     

  • 90.

    Greve, P. & Seneviratne, S. I. Assessment of future changes in water availability and aridity. Geophys. Res. Lett. 42, 5493–5499 (2015).


    Google Scholar
     

  • 91.

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).


    Google Scholar
     

  • 92.

    Boehlert, B., Solomon, S. & Strzepek, K. M. Water under a changing and uncertain climate: lessons from climate model ensembles. J. Clim. 28, 9561–9582 (2015).


    Google Scholar
     

  • 93.

    Kumar, S., Allan, R. P., Zwiers, F., Lawrence, D. M. & Dirmeyer, P. A. Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land. Geophys. Res. Lett. 42, 10,867–10,875 (2015).


    Google Scholar
     

  • 94.

    Markonis, Y., Papalexiou, S. M., Matinkova, M. & Hanel, M. Assessment of water cycle intensification over land using a multisource global gridded precipitation dataset. J. Geophys. Res. Atmos. 124, 11175–11187 (2019).


    Google Scholar
     

  • 95.

    Brutsaert, W. & Parlange, M. B. Hydrologic cycle explains the evaporation paradox. Nature 396, 30 (1998).


    Google Scholar
     

  • 96.

    Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).


    Google Scholar
     

  • 97.

    Gronewold, A. D. & Rood, R. B. Recent water level changes across Earth’s largest lake system and implications for future variability. J. Great Lakes Res. 45, 1–3 (2019).


    Google Scholar
     

  • 98.

    Notaro, M., Bennington, V. & Lofgren, B. Dynamical downscaling-based projections of Great Lakes water levels. J. Clim. 28, 9721–9745 (2015).


    Google Scholar
     

  • 99.

    Busker, T. et al. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. 23, 669–690 (2019).


    Google Scholar
     

  • 100.

    Hegerl, G. C. et al. Challenges in quantifying changes in the global water cycle. Bull. Am. Meteorol. Soc. 96, 1097–1115 (2015).


    Google Scholar
     

  • 101.

    Zhang, G. et al. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 44, 252–260 (2017).


    Google Scholar
     

  • 102.

    Zhang, G. et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 44, 5550–5560 (2017).


    Google Scholar
     

  • 103.

    Huang, L., Liu, J., Shao, Q. & Liu, R. Changing inland lakes responding to climate warming in Northeastern Tibetan Plateau. Clim. Change 109, 479–502 (2011).


    Google Scholar
     

  • 104.

    Ma, R. et al. A half-century of changes in China’s lakes: Global warming or human influence? Geophys. Res. Lett. 37, L24106 (2010).


    Google Scholar
     

  • 105.

    Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018). Used satellite observations and hydrological modelling to demonstrate that the global endorheic system experienced a widespread water loss during the start of the twenty-first century.


    Google Scholar
     

  • 106.

    Smith, L. C., Sheng, Y., MacDonald, G. M. & Hinzman, L. D. Disappearing arctic lakes. Science 308, 1429 (2005).


    Google Scholar
     

  • 107.

    van Huissteden, J. et al. Methane emissions from permafrost thaw lakes limited by lake drainage. Nat. Clim. Change 1, 119–123 (2011).


    Google Scholar
     

  • 108.

    Micklin, P. The past, present, and future Aral Sea. Lakes Reserv. Res. Manag. 15, 193–213 (2010).


    Google Scholar
     

  • 109.

    Small, E. E., Giorgi, F., Sloan, L. C. & Hostetler, S. The effects of desiccation and climatic change on the hydrology of the Aral Sea. J. Clim. 14, 300–322 (2001).


    Google Scholar
     

  • 110.

    Satgé, F. et al. Role of climate variability and human activity on Poopó Lake droughts between 1990 and 2015 assessed using remote sensing data. Remote Sens. 9, 218 (2017).


    Google Scholar
     

  • 111.

    Lei, Y. et al. Extreme lake level changes on the Tibetan Plateau associated with the 2015/2016 El Ninõ. Geophys. Res. Lett. 46, 5889–5898 (2019).


    Google Scholar
     

  • 112.

    Wang, S. Y., Gillies, R. R., Jin, J. & Hipps, L. E. Coherence between the Great Salt Lake level and the Pacific quasi-decadal oscillation. J. Clim. 23, 2161–2177 (2010).


    Google Scholar
     

  • 113.

    Benson, L. V. et al. Correlation of late-Pleistocene lake-level oscillations in Mono Lake, California, with North Atlantic climate events. Quat. Res. 49, 1–10 (1998).


    Google Scholar
     

  • 114.

    Marchant, R., Mumbi, C., Behera, S. & Yamagata, T. The Indian Ocean dipole – the unsung driver of climatic variability in East Africa. Afr. J. Ecol. 45, 4–16 (2007).


    Google Scholar
     

  • 115.

    Awange, J. L. et al. Falling Lake Victoria water levels: Is climate a contributing factor? Clim. Change 89, 281–297 (2008).


    Google Scholar
     

  • 116.

    Muller, M. Cape Town’s drought: don’t blame climate change. Nature 559, 174–176 (2018).


    Google Scholar
     

  • 117.

    Angel, J. R. & Kunkel, K. E. The response of Great Lakes water levels to future climate scenarios with an emphasis on Lake Michigan-Huron. J. Great Lakes Res. 36, 51–58 (2010).


    Google Scholar
     

  • 118.

    Malsy, M., Aus der Beek, T., Eisner, S. & Flörke, M. Climate change impacts on Central Asian water resources. Adv. Geosci. 32, 77–83 (2012).


    Google Scholar
     

  • 119.

    MacKay, M. & Seglenieks, F. On the simulation of Laurentian Great Lakes water levels under projections of global climate change. Clim. Change 117, 55–67 (2013).


    Google Scholar
     

  • 120.

    Lewis, W. M. Jr A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci. 40, 1779–1787 (1983).


    Google Scholar
     

  • 121.

    Kirillin, G. Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal. Environ. Res. 15, 279–293 (2010).


    Google Scholar
     

  • 122.

    Shatwell, T., Thiery, W. & Kirillin, G. Future projections of temperature and mixing regime of European temperate lakes. Hydrol. Earth Syst. Sci. 23, 1533–1551 (2019).


    Google Scholar
     

  • 123.

    Ficker, H., Luger, M. & Gassner, H. From dimictic to monomictic: empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshw. Biol. 62, 1335–1345 (2017).


    Google Scholar
     

  • 124.

    Mueller, D. R., Van Hove, P., Antoniades, D., Jeffries, M. O. & Vincent, W. F. High Arctic lakes as sentinel ecosystems: Cascading regime shifts in climate, ice cover, and mixing. Limnol. Oceanogr. 54, 2371–2385 (2009).


    Google Scholar
     

  • 125.

    Woolway, R. I. et al. Substantial increase in minimum lake surface temperatures under climate change. Clim. Change 155, 81–94 (2019).


    Google Scholar
     

  • 126.

    Yankova, Y., Neuenschwander, S., Köster, O. & Posch, T. Abrupt stop of deep water turnover with lake warming: Drastic consequences for algal primary producers. Sci. Rep. 7, 13770 (2017).


    Google Scholar
     

  • 127.

    Weyhenmeyer, G. A., Westöö, A.-K. & Willén, E. in European Large Lakes Ecosystem Changes and Their Ecological and Socioeconomic Impacts. Developments in Hydrobiology Vol. 199 (eds Nõges, T. et al) 111–118 (Springer, 2007)

  • 128.

    Woolway, R. I., Meinson, P., Nõges, P., Jones, I. D. & Laas, A. Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Clim. Change 141, 759–773 (2017).


    Google Scholar
     

  • 129.

    Shatwell, T., Adrian, R. & Kirillin, G. Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes. Sci. Rep. 6, 24361 (2016).


    Google Scholar
     

  • 130.

    Williamson, C. E. et al. Lakes as sensors in the landscape: optical metrics as scalable sentinel responses to climate change. Limnol. Oceanogr. 59, 840–850 (2014).


    Google Scholar
     

  • 131.

    de Wit, H. A. et al. Current browning of surface waters will be further promoted by wetter climate. Environ. Sci. Technol. Lett. 3, 430–435 (2016).


    Google Scholar
     

  • 132.

    Meyer-Jacob, C. et al. The browning and re-browning of lakes: divergent lake-water organic carbon trends linked to acid deposition and climate change. Sci. Rep. 9, 16676 (2019).


    Google Scholar
     

  • 133.

    Rogozin, D. Y. et al. Disturbance of meromixis in saline Lake Shira (Siberia, Russia): Possible reasons and ecosystem response. Limnologica 66, 12–23 (2017).


    Google Scholar
     

  • 134.

    Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019). Used three decades of high-resolution satellite imagery to investigate long-term trends in intense near-surface phytoplankton blooms for 71 large lakes globally.


    Google Scholar
     

  • 135.

    da Silva, C. F. M., Torgan, L. C. & Schneck, F. Temperature and surface runoff affect the community of periphytic diatoms and have distinct effects on functional groups: evidence of a mesocosms experiment. Hydrobiologia 839, 37–50 (2019).


    Google Scholar
     

  • 136.

    Urrutia-Cordero, P. et al. Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms. Freshw. Biol. 62, 1869–1878 (2017).


    Google Scholar
     

  • 137.

    Fey, S. B., Mertens, A. N., Beversdorf, L. J., McMahon, K. D. & Cottingham, K. L. Recognizing cross-ecosystem responses to changing temperatures: soil warming impacts pelagic food webs. Oikos 124, 1473–1481 (2015).


    Google Scholar
     

  • 138.

    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).


    Google Scholar
     

  • 139.

    Urrutia-Cordero, P., Ekvall, M. K. & Hansson, L. A. Local food web management increases resilience and buffers against global change effects on freshwaters. Sci. Rep. 6, 29542 (2016).


    Google Scholar
     

  • 140.

    Gallina, N., Beniston, M. & Jacquet, S. Estimating future cyanobacterial occurrence and importance in lakes: a case study with Planktothrix rubescens in Lake Geneva. Aquat. Sci. 79, 249–263 (2017).


    Google Scholar
     

  • 141.

    Favot, E. J. et al. Climate variability promotes unprecedented cyanobacterial blooms in a remote, oligotrophic Ontario lake: evidence from paleolimnology. J. Paleolimnol. 62, 31–52 (2019).


    Google Scholar
     

  • 142.

    Shi, K. et al. Phenology of phytoplankton blooms in a trophic lake observed from long-term MODIS data. Environ. Sci. Technol. 53, 2324–2331 (2019).


    Google Scholar
     

  • 143.

    Maeda, E. E. et al. Temporal patterns of phytoplankton phenology across high latitude lakes unveiled by long-term time series of satellite data. Remote Sens. Environ. 221, 609–620 (2019).


    Google Scholar
     

  • 144.

    Jeppesen, E. et al. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750, 201–227 (2015).


    Google Scholar
     

  • 145.

    O’Reilly, C. M., Alin, S. R., Plisnier, P.-D., Cohen, A. S. & McKee, B. A. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424, 766–768 (2003).


    Google Scholar
     

  • 146.

    Verburg, P., Hecky, R. E. & Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 301, 505–507 (2003).


    Google Scholar
     

  • 147.

    Galloway, A. W. E. & Winder, M. Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS One 10, e0130053 (2015).


    Google Scholar
     

  • 148.

    Verbeek, L., Gall, A., Hillebrand, H. & Striebel, M. Warming and oligotrophication cause shifts in freshwater phytoplankton communities. Glob. Change Biol. 24, 4532–4543 (2018).


    Google Scholar
     

  • 149.

    Hesselschwerdt, J. & Wantzen, K. M. Global warming may lower thermal barriers against invasive species in freshwater ecosystems – A study from Lake Constance. Sci. Total Environ. 645, 44–50 (2018).


    Google Scholar
     

  • 150.

    Obryk, M. K. et al. Responses of Antarctic marine and freshwater ecosystems to changing ice conditions. Bioscience 66, 864–879 (2016).


    Google Scholar
     

  • 151.

    Saros, J. E. et al. Arctic climate shifts drive rapid ecosystem responses across the West Greenland landscape. Environ. Res. Lett. 14, 074027 (2019).


    Google Scholar
     

  • 152.

    Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).


    Google Scholar
     

  • 153.

    Pastick, N. J. et al. Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Glob. Change Biol. 25, 1171–1189 (2019).


    Google Scholar
     

  • 154.

    Brothers, S. et al. A feedback loop links brownification and anoxia in a temperate, shallow lake. Limnol. Oceanogr. 59, 1388–1398 (2014).


    Google Scholar
     

  • 155.

    Mormul, R. P., Ahlgren, J., Ekvall, M. K., Hansson, L.-A. & Brönmark, C. Water brownification may increase the invasibility of a submerged non-native macrophyte. Biol. Invasions 14, 2091–2099 (2012).


    Google Scholar
     

  • 156.

    Williamson, C. E. et al. Climate change-induced increases in precipitation are reducing the potential for solar ultraviolet radiation to inactivate pathogens in surface waters. Sci. Rep. 7, 13033 (2017).


    Google Scholar
     

  • 157.

    Williamson, C. E. et al. Ecological consequences of long-term browning in lakes. Sci. Rep. 5, 18666 (2015).


    Google Scholar
     

  • 158.

    Hayden, B. et al. From clear lakes to murky waters – tracing the functional response of high-latitude lake communities to concurrent ‘greening’ and ‘browning’. Ecol. Lett. 22, 807–816 (2019).


    Google Scholar
     

  • 159.

    Finstad, A. G. et al. From greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. Sci. Rep. 6, 31944 (2016).


    Google Scholar
     

  • 160.

    Jimenez, L., Ruhland, K. M., Jeziorski, A., Smol, J. P. & Perez-Martinez, C. Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain. Glob. Change Biol. 24, e139–e158 (2018).


    Google Scholar
     

  • 161.

    Symons, C. C., Schulhof, M. A., Cavalheri, H. B. & Shurin, J. B. Antagonistic effects of temperature and dissolved organic carbon on fish growth in California mountain lakes. Oecologia 189, 231–241 (2019).


    Google Scholar
     

  • 162.

    Coleman, K. A. et al. Assessing long-term changes in aquatic ecosystems near a small conventional oil and gas operation in the Cameron Hills, southern Northwest Territories, Canada. Fund. Appl. Limnol. 192, 181–197 (2019).


    Google Scholar
     

  • 163.

    Lévesque, D., Pinel-Alloul, B., Méthot, G. & Steedman, R. Effects of climate, limnological features and watershed clearcut logging on long-term variation in zooplankton communities of Boreal Shield Lakes. Water 9, 733 (2017).


    Google Scholar
     

  • 164.

    Gutowsky, L. F. G. et al. Quantifying multiple pressure interactions affecting populations of a recreationally and commercially important freshwater fish. Glob. Change Biol. 25, 1049–1062 (2019).


    Google Scholar
     

  • 165.

    Biswas, S. R., Vogt, R. J. & Sharma, S. Projected compositional shifts and loss of ecosystem services in freshwater fish communities under climate change scenarios. Hydrobiologia 799, 135–149 (2017).


    Google Scholar
     

  • 166.

    Smith, S. D. P. et al. Evidence for interactions among environmental stressors in the Laurentian Great Lakes. Ecol. Indic. 101, 203–211 (2019).


    Google Scholar
     

  • 167.

    Brooks, B. W. et al. Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 35, 6–13 (2016).


    Google Scholar
     

  • 168.

    Cambronero, M. C. et al. Predictability of the impact of multiple stressors on the keystone species Daphnia. Sci. Rep. 8, 17572 (2018).


    Google Scholar
     

  • 169.

    Greaver, T. L. et al. Key ecological responses to nitrogen are altered by climate change. Nat. Clim. Change 6, 836–843 (2016).


    Google Scholar
     

  • 170.

    Collingsworth, P. D. et al. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America. Rev. Fish Biol. Fish. 27, 363–391 (2017).


    Google Scholar
     

  • 171.

    Kilic, L. et al. Expected performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an all-weather and high spatial resolution estimation of ocean and sea ice parameters. J. Geophys. Res. Oceans 123, 7564–7580 (2018).


    Google Scholar
     

  • 172.

    Cretaux, J.-F. et al. Lake volume monitoring from space. Surv. Geophys. 37, 269–305 (2016).


    Google Scholar
     

  • 173.

    Piwowar, H. A. & Vision, T. J. Data reuse and the open data citation advantage. PeerJ 1, e175 (2013).


    Google Scholar
     

  • 174.

    Bruce, L. C. et al. A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network. Environ. Model. Softw. 102, 274–291 (2018).


    Google Scholar
     

  • 175.

    Zwart, J. A. et al. Improving estimates and forecasts of lake carbon dynamics using data assimilation. Limnol. Oceanogr. Methods 17, 97–111 (2019).


    Google Scholar
     

  • 176.

    Read, J. S. et al. Process-guided deep learning predictions of lake water temperature. Water Resour. Res. 55, 9173–9190 (2019).


    Google Scholar
     

  • 177.

    Carrea, L. & Merchant, C. J. GloboLakes: lake surface water temperature (LSWT) v4.0 (1995-2016). CEDA Archive https://doi.org/10.5285/76a29c5b55204b66a40308fc2ba9cdb3 (2019).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *