Global patterns of the leaf economics spectrum in wetlands


  • 1.

    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Onoda, Y. et al. Physiological and structural tradeoffs underlying the leaf economics spectrum. N. Phytol. 214, 1447–1463 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Dray, S. et al. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95, 14–21 (2014).

    Article 

    Google Scholar
     

  • 6.

    Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Güsewell, S. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect. Plant Ecol. Evol. Syst. 5, 37–61 (2002).

    Article 

    Google Scholar
     

  • 8.

    Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).

    Article 

    Google Scholar
     

  • 9.

    Sutton-Grier, A. E. & Megonigal, J. P. Plant species traits regulate methane production in freshwater wetland soils. Soil Biol. Biochem. 43, 413–420 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Alldred, M. & Baines, S. B. Effects of wetland plants on denitrification rates: a meta-analysis. Ecol. Appl. 26, 676–685 (2016).

    Article 

    Google Scholar
     

  • 11.

    Moor, H. et al. Towards a trait-based ecology of wetland vegetation. J. Ecol. 105, 1623–1635 (2017).

    Article 

    Google Scholar
     

  • 12.

    Sutton-Grier, A. E., Wright, J. P. & Richardson, C. J. Different plant traits affect two pathways of riparian nitrogen removal in a restored freshwater wetland. Plant Soil 365, 41–57 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Pan, Y., Cieraad, E. & van Bodegom, P. M. Are ecophysiological adaptive traits decoupled from leaf economics traits in wetlands? Funct. Ecol. 33, 1202–1210 (2019).

    Article 

    Google Scholar
     

  • 14.

    Lambers, H., Chapin, F. S. & Pons, T. L. Plant Physiological Ecology. (Springer New York, 2008). https://doi.org/10.1007/978-0-387-78341-3.

  • 15.

    Colmer, T. D. & Voesenek, L. A. C. J. Flooding tolerance: suites of plant traits in variable environments. Funct. Plant Biol. 36, 665–681 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Douma, J. C., Bardin, V., Bartholomeus, R. P. & van Bodegom, P. M. Quantifying the functional responses of vegetation to drought and oxygen stress in temperate ecosystems. Funct. Ecol. 26, 1355–1365 (2012).

    Article 

    Google Scholar
     

  • 17.

    Ramsar Convention Secretariat. The Ramsar Convention Manual: a guide to the Convention on Wetlands (Ramsar, Iran, 1971). https://doi.org/10.1007/978-94-007-0551-7 (2013).

  • 18.

    Pan, Y. et al. Drivers of plant traits that allow survival in wetlands. Funct. Ecol. https://doi.org/10.1111/1365-2435.13541 (2020).

  • 19.

    Keddy, P. A. Wetland ecology: principles and conservation. (Cambridge University Press, UK, 2010).

  • 20.

    Ordoñez, J. C. et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology 91, 3218–3228 (2010).

    Article 

    Google Scholar
     

  • 21.

    Mommer, L., Lenssen, J. P. M., Huber, H., Visser, E. J. W. & De Kroon, H. Ecophysiological determinants of plant performance under flooding: a comparative study of seven plant families. J. Ecol. 94, 1117–1129 (2006).

    Article 

    Google Scholar
     

  • 22.

    Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann. Bot. 109, 1047–1053 (2012).

    Article 

    Google Scholar
     

  • 23.

    Reich, P. B., Ellsworth, D. S. & Walters, M. B. Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: Evidence from within and across species and functional groups. Funct. Ecol. 12, 948–958 (1998).

    Article 

    Google Scholar
     

  • 24.

    Reich, P. B. et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114, 471–482 (1998).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Mommer, L., Pedersen, O. & Visser, E. J. W. Acclimation of a terrestrial plant to submergence facilitates gas exchange under water. Plant, Cell Environ. 27, 1281–1287 (2004).

    Article 

    Google Scholar
     

  • 26.

    Herzog, M. & Pedersen, O. Partial versus complete submergence: Snorkelling aids root aeration in Rumex palustris but not in R. acetosa. Plant, Cell Environ. 37, 2381–2390 (2014).

    CAS 

    Google Scholar
     

  • 27.

    Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Article 

    Google Scholar
     

  • 28.

    Violle, C. et al. Plant functional traits capture species richness variations along a flooding gradient. Oikos 120, 389–398 (2011).

    Article 

    Google Scholar
     

  • 29.

    Colmer, T. D., Winkel, A. & Pedersen, O. A perspective on underwater photosynthesis in submerged terrestrial wetland plants. AoB Plants 11, 1–15 (2011).


    Google Scholar
     

  • 30.

    Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Article 

    Google Scholar
     

  • 31.

    Cyr, H. & Face, M. L. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361, 148–150 (1993).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Hikosaka, K. & Shigeno, A. The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia 160, 443–451 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Pedersen, O., Colmer, T. D., Borum, J., Zavala-Perez, A. & Kendrick, G. A. Heat stress of two tropical seagrass species during low tides—impact on underwater net photosynthesis, dark respiration and diel in situ internal aeration. N. Phytol. 210, 1207–1218 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Armstrong, W. & Beckett, P. M. Experimental and modelling data contradict the idea of respiratory down-regulation in plant tissues at an internal [O2] substantially above the critical oxygen pressure for cytochrome oxidase. N. Phytol. 190, 431–441 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Colmer, T. D. & Pedersen, O. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. N. Phytol. 177, 918–926 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Jackson, M. B. & Armstrong, W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1, 274–287 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).

    Article 

    Google Scholar
     

  • 38.

    Pagter, M., Bragato, C. & Brix, H. Tolerance and physiological responses of Phragmites australis to water deficit. Aquat. Bot. 81, 285–299 (2005).

    Article 

    Google Scholar
     

  • 39.

    Ellenberg, H. H. Vegetation ecology of central Europe. (Cambridge University Press, 1988).

  • 40.

    Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).

    Article 

    Google Scholar
     

  • 41.

    Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. Camb. Philos. Soc. 81, 259–291 (2006).

    Article 

    Google Scholar
     

  • 42.

    Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a World Beyond “p < 0.05”. Am. Stat. 73, 1–19 (2019).

    MathSciNet 
    Article 

    Google Scholar
     

  • 43.

    Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    Article 

    Google Scholar
     

  • 44.

    R. Core Team. R: A language and environment for statistical computing. R Foundation Statistical Computing, Vienna, Austria. URL https://www.r-project.org/ (2018).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *