Global targets that reveal the social–ecological interdependencies of sustainable development


  • 1.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    PubMed 

    Google Scholar
     

  • 2.

    Anderson, C. B. et al. Determining nature’s contributions to achieve the sustainable development goals. Sustain. Sci. 14, 543–547 (2019).


    Google Scholar
     

  • 3.

    Wood, S. L. R. et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 29, 70–82 (2018).


    Google Scholar
     

  • 4.

    Report of the Secretary-General on SDG Progress 2019 (United Nations, 2019).

  • 5.

    Le Blanc, D. Towards integration at last? The Sustainable Development Goals as a network of targets. Sustain. Dev. 23, 176–187 (2015).


    Google Scholar
     

  • 6.

    Transforming our World: the 2030 Agenda for Sustainable Development (United Nations, 2015).

  • 7.

    McGowan, P. J. K., Stewart, G. B., Long, G. & Grainger, M. J. An imperfect vision of indivisibility in the Sustainable Development Goals. Nat. Sustain. 2, 43–45 (2019).


    Google Scholar
     

  • 8.

    Nilsson, M., Griggs, D. & Visbeck, M. Policy: Map the interactions between sustainable development goals. Nature 534, 320–322 (2016).

    PubMed 

    Google Scholar
     

  • 9.

    Barbier, E. B. & Burgess, J. C. The Sustainable Development Goals and the systems approach to sustainability. Economics 11, 2017–28 (2017).


    Google Scholar
     

  • 10.

    Nilsson, M. et al. Mapping interactions between the sustainable development goals: lessons learned and ways forward. Sustain. Sci. 13, 1489–1503 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Nerini, F. F. et al. Mapping synergies and trade-offs between energy and the Sustainable Development Goals. Nat. Energy 3, 10–15 (2018).


    Google Scholar
     

  • 12.

    Schlüter, M. et al. Capturing emergent phenomena in social-ecological systems: an analytical framework. Ecol. Soc. 24, 11 (2019).


    Google Scholar
     

  • 13.

    Preiser, R., Biggs, R., De Vos, A. & Folke, C. Social-ecological systems as complex adaptive systems: organizing principles for advancing research methods and approaches. Ecol. Soc. 23, 46 (2018).


    Google Scholar
     

  • 14.

    Fischer, J. et al. Advancing sustainability through mainstreaming a social-ecological systems perspective. Curr. Opin. Environ. Sustain. 14, 144–149 (2015).


    Google Scholar
     

  • 15.

    Leslie, H. M. et al. Operationalizing the social-ecological systems framework to assess sustainability. Proc. Natl Acad. Sci. USA 112, 5979–5984 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Reyers, B., Folke, C., Moore, M.-L., Biggs, R. & Galaz, V. Social-ecological systems insights for navigating the dynamics of the Anthropocene. Annu. Rev. Environ. Resour. 43, 267–289 (2018).


    Google Scholar
     

  • 17.

    Reyers, B., Stafford-Smith, M., Erb, K. H., Scholes, R. J. & Selomane, O. Essential variables help to focus Sustainable Development Goals monitoring. Curr. Opin. Environ. Sustain. 26–27, 97–105 (2017).


    Google Scholar
     

  • 18.

    Selomane, O., Reyers, B., Biggs, R. & Hamann, M. Harnessing insights from social-ecological systems research for monitoring sustainable development. Sustainability 11, 1190 (2019).


    Google Scholar
     

  • 19.

    Carpenter, S. R. et al. Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc. Natl Acad. Sci. USA 106, 1305–1312 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Berkes, F. Environmental governance for the Anthropocene? Social-ecological systems, resilience, and collaborative learning. Sustainability 9, 1232 (2017).


    Google Scholar
     

  • 21.

    Leach, M. et al. Equity and sustainability in the Anthropocene: a social–ecological systems perspective on their intertwined futures. Glob. Sustain. 1, e13 (2018).


    Google Scholar
     

  • 22.

    Blythe, J., Nash, K., Yates, J. & Cumming, G. Feedbacks as a bridging concept for advancing transdisciplinary sustainability research. Curr. Opin. Environ. Sustain. 26–27, 114–119 (2017).


    Google Scholar
     

  • 23.

    Takeuchi, K., Ichikawa, K. & Elmqvist, T. Satoyama landscape as social-ecological system: historical changes and future perspective. Curr. Opin. Environ. Sustain. 19, 30–39 (2016).


    Google Scholar
     

  • 24.

    Lafuite, A.-S. & Loreau, M. Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems. Ecol. Model. 351, 96–108 (2017).


    Google Scholar
     

  • 25.

    Daw, T. M. et al. Evaluating taboo trade-offs in ecosystems services and human well-being. Proc. Natl Acad. Sci. USA 112, 6949–6954 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Liu, J. G. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).

    CAS 

    Google Scholar
     

  • 27.

    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 37, 421–448 (2012).


    Google Scholar
     

  • 28.

    Haider, L. J., Boonstra, W. J., Peterson, G. D. & Schlüter, M. Traps and sustainable development in rural areas: a review. World Dev. 101, 311–321 (2019).


    Google Scholar
     

  • 29.

    Lade, S. J., Haider, L. J., Engstrom, G. & Schluter, M. Resilience offers escape from trapped thinking on poverty alleviation. Sci. Adv. 3, e1603043 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Rocha, J. C., Peterson, G., Bodin, O. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Synes, N. W. et al. Coupled land use and ecological models reveal emergence and feedbacks in socio-ecological systems. Ecography 42, 814–825 (2019).


    Google Scholar
     

  • 32.

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).


    Google Scholar
     

  • 33.

    Díaz, S. et al. The IPBES Conceptual Framework – connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).


    Google Scholar
     

  • 34.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed 

    Google Scholar
     

  • 35.

    Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change-Hum. Policy Dimens. 28, 289–297 (2014).


    Google Scholar
     

  • 36.

    Smith, D. C. et al. Implementing marine ecosystem-based management: lessons from Australia. ICES J. Mar. Sci. 74, 1990–2003 (2017).


    Google Scholar
     

  • 37.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    PubMed 

    Google Scholar
     

  • 42.

    Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3, 41 (2012).


    Google Scholar
     

  • 44.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    McAlpine, C. A. et al. Forest loss and Borneo’s climate. Environ. Res. Lett. 13, 044009 (2018).


    Google Scholar
     

  • 46.

    Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 14, e0213368 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Change 3, 913–918 (2013).


    Google Scholar
     

  • 48.

    Nel, J. L. et al. Natural hazards in a changing world: a case for ecosystem-based management. PLoS ONE 9, e95942 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Howard, J. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15, 42–50 (2017).


    Google Scholar
     

  • 50.

    Guerry, A. D. et al. Natural capital and ecosystem services informing decisions: from promise to practice. Proc. Natl Acad. Sci. USA 112, 7348–7355 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Garbach, K. et al. Examining multi-functionality for crop yield and ecosystem services in five systems of agroecological intensification. Int. J. Agric. Sustain. 15, 11–28 (2017).


    Google Scholar
     

  • 54.

    Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).

    PubMed 

    Google Scholar
     

  • 55.

    Schreckenberg, K., Mace, G. & Poudyal, M. Ecosystem Services and Poverty Alleviation: Trade-offs and Governance (Routledge, 2018).

  • 56.

    Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386, 1973–2028 (2015).

    PubMed 

    Google Scholar
     

  • 57.

    Buckley, R. C. & Brough, P. Economic value of parks via human mental health: an analytical framework. Front. Ecol. Evol. 5, 16 (2017).


    Google Scholar
     

  • 58.

    Elmqvist, T. et al. Urban Planet: Knowledge towards Sustainable Cities (Cambridge Univ. Press, 2018).

  • 59.

    Reyers, B. et al. Getting the measure of ecosystem services: a social–ecological approach. Front. Ecol. Environ. 11, 268–273 (2013).


    Google Scholar
     

  • 60.

    Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    von Uexkull, N., Croicu, M., Fjelde, H. & Buhaug, H. Civil conflict sensitivity to growing-season drought. Proc. Natl Acad. Sci. USA 113, 12391–12396 (2016).


    Google Scholar
     

  • 62.

    Moss, A., Jensen, E. & Gusset, M. Impact of a global biodiversity education campaign on zoo and aquarium visitors. Front. Ecol. Environ. 15, 243–247 (2017).


    Google Scholar
     

  • 63.

    Rustad, S. A. & Binningsbo, H. M. A price worth fighting for? Natural resources and conflict recurrence. J. Peace Res. 49, 531–546 (2012).


    Google Scholar
     

  • 64.

    Linke, A. M., Witmer, F. D. W., O’Loughlin, J., McCabe, J. T. & Tir, J. The consequences of relocating in response to drought: human mobility and conflict in contemporary Kenya. Environ. Res. Lett. 13, 094014 (2018).


    Google Scholar
     

  • 65.

    Burrows, K. & Kinney, P. Exploring the climate change, migration and conflict nexus. Int. J. Environ. Res. Public Health 13, 443 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Global Gender and Development Outlook (United Nations Environment Programme, 2016).

  • 67.

    Harper, S., Grubb, C., Stiles, M. & Sumaila, U. R. Contributions by women to fisheries economies: insights from five maritime countries. Coast. Manag. 45, 91–106 (2017).


    Google Scholar
     

  • 68.

    Cole, S. M. et al. Postharvest fish losses and unequal gender relations: drivers of the social-ecological trap in the Barotse Floodplain fishery, Zambia. Ecol. Soc. 23, 18 (2018).


    Google Scholar
     

  • 69.

    Martin-Lopez, B., Gomez-Baggethun, E., Garcia-Llorente, M. & Montes, C. Trade-offs across value-domains in ecosystem services assessment. Ecol. Indic. 37, 220–228 (2014).


    Google Scholar
     

  • 70.

    Carpenter, S. R. & Bennett, E. M. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6, 014009 (2011).


    Google Scholar
     

  • 71.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Keys, P. W., Wang-Erlandsson, L. & Gordon, L. J. Megacity precipitationsheds reveal tele-connected water security challenges. PLoS ONE 13, e0194311 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).

    PubMed 

    Google Scholar
     

  • 74.

    Pardini, R., Bueno, Ad. A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Rocha, J. C., Peterson, G., Bodin, Ö. & Levin, S. Cascading regime shifts within and across scales. Science 362, 1379–1383 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Oosterbroek, B., de Kraker, J., Huynen, M. & Martens, P. Assessing ecosystem impacts on health: a tool review. Ecosyst. Serv. 17, 237–254 (2016).


    Google Scholar
     

  • 77.

    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    PubMed 

    Google Scholar
     

  • 78.

    Pereira, L. & Drimie, S. Governance arrangements for the future food system: addressing complexity in South Africa. Environ.: Sci. Policy Sustain. Dev. 58, 18–31 (2016).


    Google Scholar
     

  • 79.

    Ericksen, P. J. Conceptualizing food systems for global environmental change research. Glob. Environ. Change 18, 234–245 (2008).


    Google Scholar
     

  • 80.

    Lade, S. J., Haider, L. J., Engström, G. & Schlüter, M. Resilience offers escape from trapped thinking on poverty alleviation. Sci. Adv. 3, e1603043 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Beck, M. W., Claassen, A. H. & Hundt, P. J. Environmental and livelihood impacts of dams: common lessons across development gradients that challenge sustainability. Int. J. River Basin Manag. 10, 73–92 (2012).


    Google Scholar
     

  • 84.

    Botelho, A., Ferreira, P., Lima, F., Pinto, L. M. C. & Sousa, S. Assessment of the environmental impacts associated with hydropower. Renew. Sustain. Energy Rev. 70, 896–904 (2017).


    Google Scholar
     

  • 85.

    Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).


    Google Scholar
     

  • 86.

    Benitez-Lopez, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).


    Google Scholar
     

  • 87.

    Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. 2, 775–781 (2018).

    PubMed 

    Google Scholar
     

  • 88.

    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    D’Odorico, P. et al. Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 14, 053001 (2019).


    Google Scholar
     

  • 91.

    Crona, B. I. et al. Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems. Fish Fish. 17, 1175–1182 (2016).


    Google Scholar
     

  • 92.

    Galaz, V. et al. Tax havens and global environmental degradation. Nat. Ecol. Evol. 2, 1352–1357 (2018).

    PubMed 

    Google Scholar
     

  • 93.

    Folke, C. et al. Transnational corporations and the challenge of biosphere stewardship. Nat. Ecol. Evol. 3, 1396–1403 (2019).

    PubMed 

    Google Scholar
     

  • 94.

    United Nations Secretary-General Progress towards the Sustainable Development Goals: Report of the Secretary-General (UN, 2018).

  • 95.

    Stafford-Smith, M. et al. Integration: the key to implementing the Sustainable Development Goals. Sustain. Sci. 12, 911–919 (2017).

    PubMed 

    Google Scholar
     

  • 96.

    Abson, D. J. et al. Leverage points for sustainability transformation. Ambio 46, 30–39 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Sachs, J. D. et al. Six Transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2, 805–814 (2019).


    Google Scholar
     

  • 98.

    Arkema, K. K. et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl Acad. Sci. USA 112, 7390–7395 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 99.

    Eakin, H. et al. Identifying attributes of food system sustainability: emerging themes and consensus. Agric. Hum. Values 34, 757–773 (2017).


    Google Scholar
     

  • 100.

    Biggs, R., Schlüter, M. & Schoon, M. L. Principles for Building Resilience: Sustaining Ecosystem Services in Social-Ecological Systems (Cambridge Univ. Press, 2015).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *