• 1.

    Kim, P., Chung, E., Yamashita, H., Hung, K. E. & Mizoguchi, A. et al. In vivo wide-area cellular imaging by side-view endomicroscopy. Nat. Methods7, 303–305 (2010).

    Article 

    Google Scholar
     

  • 2.

    Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science296, 1869–1873 (2002).

    Article 

    Google Scholar
     

  • 3.

    Sipkins, D. A., Wei, X., Wu, J. W., Runnels, J. M. & Côté, D. et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature435, 969–973 (2005).

    Article 

    Google Scholar
     

  • 4.

    Kim, P., Pouris’ haag, M., Côté, D., Lin, C. P. & Yun, S.-H. In vivo confocal and multiphoton microendoscopy. J. Biomed. Opt.13, 010501 (2008).

    Article 

    Google Scholar
     

  • 5.

    Hwang, K., Seo, Y.-H. & Jeong, K.-H. Microscanners for optical endomicroscopic applications. Micro Nano Syst. Lett.5, 1 (2017).

    Article 

    Google Scholar
     

  • 6.

    Liang, W., Hall, G., Messerschmidt, B., Li, M.-J. & Li, X. Nonlinear optical endomicroscopy for label-free functional histology in vivo. Light. Sci. Appl.6, e17082 (2017).

    Article 

    Google Scholar
     

  • 7.

    Piyawattanametha, W., Ra, H., Loewke, K. E., Mandella, M. J. & Contag, C. H. et al. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract. J. Biomed. Opt.17, 021102 (2012).

    Article 

    Google Scholar
     

  • 8.

    Do, D., Yoo, H. & Gweon, D.-G. Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator. J. Biomed. Opt.19, 066010 (2014).

    Article 

    Google Scholar
     

  • 9.

    Zong, W., Wu, R., Li, M., Hu, Y. & Li, Y. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods14, 713 (2017).

    Article 

    Google Scholar
     

  • 10.

    Sonn, G. A., Jones, S.-N. E., Tarin, T. V., Du, C. B. & Mach, K. E. et al. Optical biopsy of human bladder neoplasia with in vivo confocal laser endomicroscopy. J. Urol.182, 1299–1305 (2009).

    Article 

    Google Scholar
     

  • 11.

    Wellikoff, A. S., Holladay, R. C., Downie, G. H., Chaudoir, C. S. & Brandi, L. et al. Comparison of in vivo probe‐based confocal laser endomicroscopy with histopathology in lung cancer: a move toward optical biopsy. Respirology20, 967–974 (2015).

    Article 

    Google Scholar
     

  • 12.

    Piyawattanametha, W., Ra, H., Qiu, Z., Friedland, S. & Liu, J. T. et al. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract. J. Biomed. Opt.17, 0211021–0211024 (2012).

    Article 

    Google Scholar
     

  • 13.

    Duan, X., Li, H., Qiu, Z., Joshi, B. P. & Pant, A. et al. MEMS-based multiphoton endomicroscope for repetitive imaging of mouse colon. Biomed. Opt. Express6, 3074–3083 (2015).

    Article 

    Google Scholar
     

  • 14.

    Kumar, K., Avritscher, R., Wang, Y., Lane, N. & Madoff, D. C. et al. Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging. Biomed. Microdevices12, 223–233 (2010).

    Article 

    Google Scholar
     

  • 15.

    Park, H.-C., Song, C., Kang, M., Jeong, Y. & Jeong, K.-H. Forward imaging OCT endoscopic catheter based on MEMS lens scanning. Opt. Lett.37, 2673–2675 (2012).

    Article 

    Google Scholar
     

  • 16.

    Park, H.-C., Seo, Y.-H., Hwang, K., Lim, J.-K. & Yoon, S. Z. et al. Micromachined tethered silicon oscillator for an endomicroscopic Lissajous fiber scanner. Opt. Lett.39, 6675–6678 (2014).

    Article 

    Google Scholar
     

  • 17.

    Seo, Y.-H., Hwang, K., Park, H.-C. & Jeong, K.-H. Electrothermal MEMS fiber scanner for optical endomicroscopy. Opt. Express24, 3903–3909 (2016).

    Article 

    Google Scholar
     

  • 18.

    Seo, Y.-H., Hwang, K. & Jeong, K.-H. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Opt. Express26, 4780–4785 (2018).

    Article 

    Google Scholar
     

  • 19.

    Holmstrom, S. T., Baran, U. & Urey, H. MEMS laser scanners: a review. J. Microelectromechanical Syst.23, 259–275 (2014).

    Article 

    Google Scholar
     

  • 20.

    Park, H.-C., Song, C. & Jeong, K.-H. Micromachined lens microstages for two-dimensional forward optical scanning. Opt. Express18, 16133–16138 (2010).

    Article 

    Google Scholar
     

  • 21.

    Engelbrecht, C. J., Johnston, R. S., Seibel, E. J. & Helmchen, F. Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. Opt. Express16, 5556–5564 (2008).

    Article 

    Google Scholar
     

  • 22.

    Liang, W., Murari, K., Zhang, Y., Chen, Y. & Li, M.-J. et al. Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy. J. Biomed. Opt.17, 0211081–0211085 (2012).


    Google Scholar
     

  • 23.

    El Rifai, O. M. & Youcef-Toumi, K. In Proc. American Control Conference. 3251–3255 (IEEE, 2001).

  • 24.

    Smithwick, Q. Y., Vagners, J., Reinhall, P. G. & Seibel, E. J. An error space controller for a resonating fiber scanner: simulation and implementation. J. Dyn. Syst. Meas. Control128, 899–913 (2006).

    Article 

    Google Scholar
     

  • 25.

    Wu, T., Ding, Z., Wang, K., Chen, M. & Wang, C. Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography. Opt. Express17, 13819–13829 (2009).

    Article 

    Google Scholar
     

  • 26.

    Hwang, K., Seo, Y.-H., Ahn, J., Kim, P. & Jeong, K.-H. Frequency selection rule for high definition and high frame rate Lissajous scanning. Sci. Rep.7, 14075 (2017).

    Article 

    Google Scholar
     

  • 27.

    Irvine, T. Application of the Newton-Raphson Method to vibration problems. (Revision E, Vibrationdata, 2010).

  • 28.

    Miao, W., Kim, H., Gujrati, V., Kim, J. Y. & Jon, H. et al. Photo-decomposable organic nanoparticles for combined tumor optical imaging and multiple phototherapies. Theranostics6, 2367 (2016).

    Article 

    Google Scholar
     

  • 29.

    Miao, W., Shim, G., Kim, G., Lee, S. & Lee, H. J. et al. Image-guided synergistic photothermal therapy using photoresponsive imaging agent-loaded graphene-based nanosheets. J. Controlled Release211, 28–36 (2015).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *