Heat stress induced arginylation of HuR promotes alternative polyadenylation of Hsp70.3 by regulating HuR stability and RNA binding


  • 1.

    Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science. 1986;234:179–86.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Ferber S, Ciechanover A. Role of arginine-tRNA in protein degradation by the ubiquitin pathway. Nature. 1987;326:808.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Kaji H, Kaji A. Protein modification by arginylation. Chem Biol. 2011;18:6–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Kaji H. Amino-terminal arginylation of chromosomal proteins by arginyl-tRNA. Biochemistry. 1976;15:5121–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Wong CC, Xu T, Rai R, Bailey AO, Yates 3rdJR, Wolf YI, et al. Global analysis of posttranslational protein arginylation. PLoS Biol. 2007;5:e258.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Wang J, Han X, Wong CC, Cheng H, Aslanian A, Xu T, et al. Arginyltransferase ATE1 catalyzes midchain arginylation of proteins at side chain carboxylates in vivo. Chem Biol. 2014;21:331–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Eriste E, Norberg Å, Nepomuceno D, Kuei C, Kamme F, Tran D-T, et al. A novel form of neurotensin post-translationally modified by arginylation. J Biol Chem. 2005;280:35089–97.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Wang J, Pejaver VR, Dann GP, Wolf MY, Kellis M, Huang Y, et al. Target site specificity and in vivo complexity of the mammalian arginylome. Sci Rep. 2018;8:16177.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Wang J, Han X, Leu NA, Sterling S, Kurosaka S, Fina M, et al. Protein arginylation targets alpha synuclein, facilitates normal brain health, and prevents neurodegeneration. Sci Rep. 2017;7:1–14.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Elias S, Ciechanover A. Post-translational addition of an arginine moiety to acidic NH2 termini of proteins is required for their recognition by ubiquitin-protein ligase. J Biol Chem. 1990;265:15511–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Karakozova M, Kozak M, Wong CC, Bailey AO, Yates JR, Mogilner A, et al. Arginylation of ß-actin regulates actin cytoskeleton and cell motility. Science. 2006;313:192–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Saha S, Mundia MM, Zhang F, Demers RW, Korobova F, Svitkina T, et al. Arginylation regulates intracellular actin polymer level by modulating actin properties and binding of capping and severing proteins. Mol Biol Cell. 2010;21:1350–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Zhang F, Patel DM, Colavita K, Rodionova I, Buckley B, Scott DA, et al. Arginylation regulates purine nucleotide biosynthesis by enhancing the activity of phosphoribosyl pyrophosphate synthase. Nat Commun. 2015;6:7517.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Piatkov KI, Brower CS, Varshavsky A. The N-end rule pathway counteracts cell death by destroying proapoptotic protein fragments. Proc Natl Acad Sci. 2012;109:E1839–47.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Rai R, Zhang F, Colavita K, Leu NA, Kurosaka S, Kumar A, et al. Arginyltransferase suppresses cell tumorigenic potential and inversely correlates with metastases in human cancers. Oncogene. 2016;35:4058.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Singh A, Borah AK, Deka K, Gogoi AP, Verma K, Barah P, et al. Arginylation regulates adipogenesis by regulating expression of PPARγ at transcript and protein level. Biochim Biophys Acta. 2019;1864:596–607.

    CAS 

    Google Scholar
     

  • 17.

    Davydov IV, Varshavsky AJJoBC. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J Biol Chem. 2000;275:22931–41.

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Cha-Molstad H, Sung KS, Hwang J, Kim KA, Yu JE, Yoo YD, et al. Amino-terminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat Cell Biol. 2015;17:917.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Decca MB, Carpio MA, Bosc C, Galiano MR, Job D, Andrieux A, et al. Post-translational arginylation of calreticulin: a new isospecies of calreticulin component of stress granules. J Biol Chem. 2007;282:8237–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, Davydov IV, et al. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci. 2005;102:15030–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    White MD, Klecker M, Hopkinson RJ, Weits DA, Mueller C, Naumann C, et al. Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nat Commun. 2017;8:14690.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Carpio MA, Decca MB, Sambrooks CL, Durand ES, Montich GG, Hallak ME. Calreticulin-dimerization induced by post-translational arginylation is critical for stress granules scaffolding. Int J Biochem Cell Biol. 2013;45:1223–35.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Zhang F, Saha S, Kashina A. Arginylation-dependent regulation of a proteolytic product of talin is essential for cell–cell adhesion. J Cell Biol. 2012;197:819–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Saha S, Kashina A. Posttranslational arginylation as a global biological regulator. Dev Biol. 2011;358:1–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Hu R-G, Sheng J, Qi X, Xu Z, Takahashi TT, Varshavsky A. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature. 2005;437:981.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Lamon KD, Kaji H. Arginyl-tRNA transferase activity as a maker of cellular aging in peripheral rat tissues. Exp Gerontol. 1980;15:53–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Deka K, Singh A, Chakraborty S, Mukhopadhyay R, Saha S. Protein arginylation regulates cellular stress response by stabilizing HSP70 and HSP40 transcripts. Cell Death Discov. 2016;2:16074.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Deka K, Saha S. Arginylation: a new regulator of mRNA stability and heat stress response. Cell Death Dis. 2017;8:e2604.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Banerji S, Berg L, Morimoto RI. Transcription and post-transcriptional regulation of avian HSP70 gene expression. J Biol Chem. 1986;261:15740–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Morimoto RI, Kroeger P, Cotto J. The transcriptional regulation of heat shock genes: a plethora of heat shock factors and regulatory conditions. In: Stress-inducible cellular responses. (Eds. Feige U, Yahara I, Morimoto RI, Polla BS) New York: Springer; 1996. p. 139–63.

  • 31.

    Morimoto RI. Cells in stress: transcriptional activation of heat shock genes. Science. 1993;259:1409–1409.

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Theodorakis NG, Morimoto RI. Posttranscriptional regulation of hsp70 expression in human cells: effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. Mol Cell Biol. 1987;7:4357–68.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Kwon YT, Kashina AS, Davydov IV, Hu R-G, An JY, Seo JW, et al. An essential role of N-terminal arginylation in cardiovascular development. Science. 2002;297:96–99.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Mayr C, Bartel DP. Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Arienti KL, Brunmark A, Axe FU, McClure K, Lee A, Blevitt J, et al. Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles. J Med. Chem. 2005;48:1873–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Dai B, Zhao XF, Mazan-Mamczarz K, Hagner P, Corl S, Bahassi EM, et al. Functional and molecular interactions between ERK and CHK2 in diffuse large B-cell lymphoma. Nat Commun. 2011;2:1–9.


    Google Scholar
     

  • 37.

    Thakuri PS, Gupta M, Singh S, Joshi R, Glasgow E, Lekan A, et al. Phytochemicals inhibit migration of triple negative breast cancer cells by targeting kinase signaling. BMC Cancer. 2020;20:1–14.


    Google Scholar
     

  • 38.

    Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5:725.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43:W174–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008;9:40.


    Google Scholar
     

  • 41.

    Hinman M, Lou H. Diverse molecular functions of Hu proteins. Cell Mol Life Sci. 2008;65:3168.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    de Lorenzo L, Sorenson R, Bailey-Serres J, Hunt AG. Noncanonical alternative polyadenylation contributes to gene regulation in response to hypoxia. Plant Cell. 2017;29:1262–77.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LR, Baechler EC, et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci. 2007;104:6758–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Hollerer I, Curk T, Haase B, Benes V, Hauer C, Neu-Yilik G, et al. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion. RNA. 2016;22:1441–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Liu Y, Hu W, Murakawa Y, Yin J, Wang G, Landthaler M, et al. Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation. Sci Rep. 2013;3:2054.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Zheng D, Wang R, Ding Q, Wang T, Xie B, Wei L, et al. Cellular stress alters 3′ UTR landscape through alternative polyadenylation and isoform-specific degradation. Nat Commun. 2018;9:2268.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Tranter M, Helsley RN, Paulding WR, McGuinness M, Brokamp C, Haar L, et al. Coordinated post-transcriptional regulation of Hsp70. 3 gene expression by microRNA and alternative polyadenylation. J Biol Chem. 2011;286:29828–37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Kraynik SM, Gabanic A, Anthony SR, Kelley M, Paulding WR, Roessler A, et al. The stress-induced heat shock protein 70.3 expression is regulated by a dual-component mechanism involving alternative polyadenylation and HuR. Biochim Biophys Acta. 2015;1849:688–96.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Abdelmohsen K, Srikantan S, Yang X, Lal A, Kim HH, Kuwano Y, et al. Ubiquitin‐mediated proteolysis of HuR by heat shock. EMBO J. 2009;28:1271–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Dai W, Zhang G, Makeyev EV. RNA-binding protein HuR autoregulates its expression by promoting alternative polyadenylation site usage. Nucleic Acids Res. 2011;40:787–800.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Dickson AM, Anderson JR, Barnhart MD, Sokoloski KJ, Oko L, Opyrchal M, et al. Dephosphorylation of HuR protein during alphavirus infection is associated with HuR relocalization to the cytoplasm. J Biol Chem. 2012;287:36229–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Grammatikakis I, Abdelmohsen K, Gorospe M. Posttranslational control of HuR function. Wiley Interdiscip Rev. 2017;8:e1372.


    Google Scholar
     

  • 54.

    Abdelmohsen K, Pullmann JrR, Lal A, Kim HH, Galban S, Yang X, et al. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell. 2007;25:543–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Masuda K, Abdelmohsen K, Kim MM, Srikantan S, Lee EK, Tominaga K, et al. Global dissociation of HuR–mRNA complexes promotes cell survival after ionizing radiation. EMBO J. 2011;30:1040–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Fan XC, STEITZ JA. Overexpression of HuR, a nuclear–cytoplasmic shuttling protein, increases the in vivo stability of ARE‐containing mRNAs. EMBO J. 1998;17:3448–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Saha S, Wang J, Buckley B, Wang Q, Lilly B, Chernov M, et al. Small molecule inhibitors of arginyltransferase regulate arginylation-dependent protein degradation, cell motility, and angiogenesis. Biochem Pharmacol. 2012;83:866–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Kaur P, Hurwitz MD, Krishnan S, Asea A. Combined hyperthermia and radiotherapy for the treatment of cancer. Cancers. 2011;3:3799–823.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Murphy ME. The HSP70 family and cancer. Carcinogenesis. 2013;34:1181–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Tranter M, Ren X, Forde T, Wilhide ME, Chen J, Sartor MA, et al. NF-κB driven cardioprotective gene programs; Hsp70. 3 and cardioprotection after late ischemic preconditioning. J Mol Cell Cardiol. 2010;49:664–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Turturici G, Sconzo G, Geraci F. Hsp70 and its molecular role in nervous system diseases. Biochem Res Int. 2011;2011.

  • 62.

    Wu G, Osada M, Guo Z, Fomenkov A, Begum S, Zhao M, et al. ΔNp63α up-regulates the Hsp70 gene in human cancer. Cancer Res. 2005;65:758–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Peng SSY, Chen CYA, Xu N, Shyu AB. RNA stabilization by the AU‐rich element binding protein, HuR, an ELAV protein. EMBO J. 1998;17:3461–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Brennan C, Steitz J. HuR and mRNA stability. Cell Mol life Sci. 2001;58:266–77.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Güttinger S, Mühlhäusser P, Koller-Eichhorn R, Brennecke J, Kutay U. Transportin2 functions as importin and mediates nuclear import of HuR. Proc Natl Acad Sci. 2004;101:2918–23.

    PubMed 

    Google Scholar
     

  • 66.

    REBANE A, AAB A, STEITZ JA. Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR. RNA. 2004;10:590–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Gallouzi I-E, Steitz JA. Delineation of mRNA export pathways by the use of cell-permeable peptides. Science. 2001;294:1895–901.

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Wang Z, Kiledjian M. The poly (A)-binding protein and an mRNA stability protein jointly regulate an endoribonuclease activity. Mol Cell Biol. 2000;20:6334–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Tran H, Maurer F, Nagamine Y. Stabilization of urokinase and urokinase receptor mRNAs by HuR is linked to its cytoplasmic accumulation induced by activated mitogen-activated protein kinase-activated protein kinase 2. Mol Cell Biol. 2003;23:7177–88.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Wang W, Furneaux H, Cheng H, Caldwell MC, Hutter D, Liu Y, et al. HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol. 2000;20:760–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Gallouzi I-E, Brennan CM, Stenberg MG, Swanson MS, Eversole A, Maizels N, et al. HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc Natl Acad Sci. 2000;97:3073–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    GALLOUZI I-E, BRENNAN CM, STEITZ JA. Protein ligands mediate the CRM1-dependent export of HuR in response to heat shock. RNA. 2001;7:1348–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Tian B, Manley JL. Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol. 2017;18:18.

    CAS 
    PubMed 

    Google Scholar
     

  • 74.

    Fesler A, Xu X, Zheng X, Li X, Jiang J, Russo JJ, et al. Identification of miR-215 mediated targets/pathways via translational immunoprecipitation expression analysis (TrIP-chip). Oncotarget. 2015;6:24463.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Place RF, Noonan EJ. Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones. 2014;19:159–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Tang Q, Yuan Q, Li H, Wang W, Xie G, Zhu K, et al. miR-223/Hsp70/JNK/JUN/miR-223 feedback loop modulates the chemoresistance of osteosarcoma to cisplatin. Biochem Biophys Res Commun. 2018;497:827–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Shehata RH, Abdelmoneim SS, Osman OA, Hasanain AF, Osama A, Abdelmoneim SS, et al. Deregulation of miR-34a and its chaperon Hsp70 in hepatitis C virus-induced liver cirrhosis and hepatocellular carcinoma patients. Asia Pac J Cancer Prev. 2017;18:2395.


    Google Scholar
     

  • 79.

    Moraes KC, Wilusz CJ, Wilusz J. CUG-BP binds to RNA substrates and recruits PARN deadenylase. RNA. 2006;12:1084–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Ueno S, Sagata N. Requirement for both EDEN and AUUUA motifs in translational arrest of Mos mRNA upon fertilization of Xenopus eggs. Dev Biol. 2002;250:156–67.

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *